The Avio® 550 Max is a compact, fully simultaneous ICP-OES instrument, ideal for labs with high throughput requirements. It utilizes a vertical plasma and is engineered to handle even the most difficult, high-matrix samples without dilution, delivering productivity, performance and faster return on investment. Plus, Syngistix™ for ICP software provides an intuitive and smart environment with smart monitoring for real-time instrument and sample diagnostics as well as results viewing to easily track sample analysis, quality control, and internal standard performance to guarantee sample accuracy.
false false
Proprietary features on the Avio 550 Max ICP-OES include:
And for added flexibility, the Avio 550 Max is available in three configurations, allowing you to select the option best suited for your application(s). This configuration of the Avio 550 Max is ideal for organic analysis applications such as the Caterpillar® S.O.S.SM Program and ASTM® methods D4951 and D5185.
21 CFR Part 11 Compatible | Yes |
---|---|
Depth | 84.0 cm |
Height | 87.0 cm |
Model Name | Avio 550 Max Oils |
Warranty | 1 Year |
Weight | 163.0 kg |
Width | 76.0 cm |
With the COVID-19 global pandemic, the utilization of face masks to limit transmission of the viral illness has gained traction. The most common type used is the 3-layer disposable, hygienic face mask. As with any consumer product, it is important that these face coverings are free of chemicals or hazards for the people that wear them, including metals. While no specific methods exist for the analysis of metals in non-medical face coverings, ISO 18562-4:2017 Biocompatibility of Breathing Gas Pathways in Healthcare Applications – Part 4: Leachables in Condensate may be relevant and applied, since it discusses the sample preparation, analytes and methodologies used to evaluate data quality.
This work describes the sample preparation and analysis of metals in disposable, non-medical face masks using the Avio® 550 Max ICP-OES, to meet the criteria defined in ISO 18562-4:2017. The Avio 550 Max is a fully simultaneous ICP and was chosen for this application due to its exceptional stability, its high resolution, which aids in interference removal, and its low argon consumption.
The prevention and control of water pollution is of critical importance to protecting both human and environmental health, and as a result, water must be monitored for pollutants at various stages, starting from the discharge of wastes and wastewaters all the way through the production of drinking water. In this regard, the U.S. Environmental Protection Agency (EPA) developed Method 200.7 for the determination of metals and trace elements in waters and wastes by ICP-OES.
This work demonstrates the ability of the Avio® 550 Max fully simultaneous ICP-OES to efficiently and accurately perform wastewater analysis following the guidelines in U.S. EPA Method 200.7.
Nowadays, laboratories are expected to tackle quick turnaround times and meet lower detection limits, while at the same time deliver high levels of sample accuracy – and although workloads and workflows may vary, the need to work quickly doesn’t. Plus, labs are looking to lower operating costs and reduce maintenance.
Meet the Avio® Max series – the ICP-OES systems that are as comfortable with multitasking as you are. No matter your workload or workflow needs, you can rely on the Avio Max series for robust and low-maintenance ICPs, delivering ease of use with intuitive, smart software and low cost of ownership.
Learn more about the advantages of the Avio Max series ICP-OES – download the interactive brochure.
With a fully simultaneous system, high sensitivity and superior resolution, the Avio® 550 and 560 Max ICP optical emission spectrometers help your lab accomplish more – even with the most difficult samples – while making the most of your resources. The Avio 550/560 Max ICP-OES systems deliver the productivity you need with the high-quality performance and faster return on investment your work demands. The instruments’ performance is further optimized by Syngistix™ for ICP software, thanks to a host of smart features developed with the user in mind, providing smart workflows, smart monitoring and smart data.
Download this product note to learn more about the unique benefits of the Avio 550 and 560 Max fully simultaneous the ICP-OES systems, delivering high throughput with low cost of ownership.
PerkinElmer's Syngistix™ is a workflow-based software designed to offer a harmonized user experience across PerkinElmer’s AA, ICP and ICP-MS platforms.
The Avio® 550/560 Max ICP-OES systems offer superior detection limits and line selection thanks to their optical system that centers on a unique high-performance solid-state detector – the segmented-array charge-coupled device (SCD) detector – with an echelle-based polychromator designed to fully utilize the capabilities of the SCD. Using a PerkinElmer echelle grating optimized for UV performance and a free-form optic – the Schmidt cross-disperser – the Avio 550/560 Max ICP-OES systems have exceptional optical throughput and excellent resolution, providing superior detection limits and line selection.
Download this technical note to learn more about the advantages of the Avio 550/560 Max’s optical system and SCD detector.
PerkinElmer's Avio® Max series ICP-OES spectrometers feature a free-running solid-state RF generator for Flat Plate™ plasma, a proprietary technology which generates a transversely symmetrical plasma, replacing previous helical-coil induction. This approach produces a flat-bottom shaped plasma which prevents sample and vapors from escaping around the outside. With Flat Plate technology, the same robust, matrix-tolerant plasma is generated and maintained with approximately half the argon consumption of helical load-coil systems. Maintenance-free, this innovative approach to RF generation minimizes operating costs without compromising performance.
Download this technical note to learn more about the Avio Max series' RF generator and Flat Plate plasma technology.
A robust and stable plasma is essential when performing analytical analyses by inductively coupled plasma optical emission spectroscopy (ICP-OES). The plasma is traditionally generated by passing argon through a series of concentric quartz tubes (the ICP torch) within a helical, radio frequency (RF) induction coil. Once established, this highly-ionized argon plasma canreach temperatures as high as 10,000 K, allowing for complete atomization of the compounds within a sample and minimizing the potential for chemical interferences.
PerkinElmer's patented Flat Plate™ plasma technology for the Avio® Max series ICP-OES provides several advantages over traditional helical coil systems - while capable of accommodating the same sample introduction systems and achieving comparable analytical precision, Flat Plate technology achieves greater plasma robustness and stability because of its unique design, leading to less sample loss, greater analytical signal, lower argon consumption, and less maintenance.
Read more about the benefits of Flat Plate plasma technology - download the technical note.
When performing measurements with ICP-OES, precisions (i.e. relative standard deviations, RSDs) of 1-2% are typical. However, applications exist where greater precision is required, such as in the analysis of precious metals, major components in battery materials, and verification of the matrix composition of samples. For these applications, a simple way of achieving high precision measurements is through high precision ICP-OES (HP-ICP-OES), an invaluable tool only available on the Avio® 550/560 Max systems.
Download this technical note to fully understand the true capabilities of the Avio 550/560 Max fully simultaneous systems for your high-precision applications.
Baseline and interfering element correction (IEC) are used with ICP optical emission spectrometry to correct analytical signals for contributions from the plasma, the matrix or elements other than the analyte. If the contributions from these components are not corrected accurately, the analytical result will be erroneous. Yet both correction techniques rely on interpolated or extrapolated correction factors. Although the two techniques can improve performance with some types of samples, they are not universally applicable.
For greater accuracy, using a full segment of the spectrum around the analyte wavelength is preferred to using just one or two points. To address this, PerkinElmer developed Multicomponent Spectral Fitting (MSF), a standard feature on the Avio® Max series ICP-OES instruments. MSF can significantly improve your analytical results – detection limits, accuracy, and precision.
Learn more about Multicomponent Spectral Fitting on the Avio Max series ICP-OES – download this technical note.
Universal Data Acquisition (UDA), a proprietary feature within Syngistix™ software on the Avio® 550/560 Max ICP-OES, allows for simultaneous acquisition of all available wavelengths all of the time with just a click of the mouse. UDA is much more than a semi-quantitative application – it will provide quantitative results without requiring a separate mode of analysis, uses virtually no extra storage space, and can be added during your normal routine analysis.
Learn more about Universal Data Acquisition only available on the Avio 550/560 Max ICP-OES – download the technical note.
The Avio® Max series ICP-OES incorporates a vertically oriented plasma with complete dual-viewing optics under computer and software control. Its dual view technology optimizes axial and radial plasma viewing to the extended linear dynamic range, measuring high and low concentrations in the same run, regardless of wavelength. Any wavelength can be used in the radial, axial, or mixed viewing modes in a single method without sacrificing quality, truly offering the best of both worlds.
Read more about the benefits of dual view technology on the Avio Max series vertical plasma ICP-OES spectrometers – download the technical note.