PerkinElmer’s NexION® 2000 is the most versatile ICP-MS on the market, featuring an array of unique technologies that combine to deliver the highest performance no matter what your analytical challenge. Discover the effortless versatility of an instrument that makes it easy to handle any sample matrix, any interference, and any particle size.
PerkinElmer received on April 11, 2018 the Application Award from LaborPraxis in the category Bio and Pharma Analysis for the NexION 2000 ICP-MS. We were awarded this prize during analytica 2018 in Munich, Germany, in acknowledgment of a new technique enabling users to quantify the amount of metal in an individual cell for the first time.
You successfully added item(s) to your cart
Ideal for laboratories new to ICP Mass Spectrometry, the NexION 2000 B ICP-MS features:
21 CFR Part 11 Compatible | Yes |
---|---|
Depth | 69.0 cm |
Height | 75.0 cm |
Model Name | NexION 2000 B |
Portable | No |
Product Brand Name | NexION |
Warranty | 1 Year |
Weight | 150.0 kg |
Width | 81.0 cm |
In this work, we demonstrate that PerkinElmer's NexION® 2000 ICP-MS, with its unique RF generator and ion optics, coupled with the Syngistix™ Nano Application Software Module, can be used to accurately measure and characterize NP sizes of 10 nm and smaller, both alone and in a mixture of NPs of various sizes.
This work demonstrates a robust method using SP-ICP-MS technology to detect CeO2 NPs which were extracted from soil samples with tetrasodium pyrophosphate (TSPP). Over the past few decades, engineered nanoparticles (ENPs) have been increasingly used in many commercial products. As a result, more and more ENPs have been released into the environment, which raises concerns over their fate, toxicity and transport therein.
This work has demonstrated the ability of the NexION 2000 ICP-MS to analyze both natural and drinking water samples in Standard (i.e. non-cell) mode, in accordance with U.S. EPA Method 200.8. Accuracy has been demonstrated through the analysis of several reference materials and spike recoveries, with stability of at least nine hours. Method detection limits allow for trace-level determinations, while the ability to selectively suppress user-defined isotopes also allows the measurement of analyte levels usually only possible by ICP-OES or Flame AA. The NexION 2000 provides a comprehensive solution to the challenge of U.S. EPA Method 200.8 and other drinking and natural water analytical requirements across the globe.
Measuring the amount of metals in CNTs presents a challenge. High levels can be measured directly in the solid by several techniques, including XRF and TEM, while low-level analysis requires complete digestion of the sample prior to analysis by ICP-OES or ICP-MS.
Through the years, both industry and analytical instrumentation have advanced. With the development of new chemicals and processes, new pollutants may enter the environment. However, the capabilities of analytical instruments have also increased, allowing the measurement of ever lower levels of environmental contaminants, as well as new pollutants.
In the textile industry, the use of titanium dioxide (TiO2) nanoparticles (NPs) is increasing due to their ability to provide UV protection, increase the hydrophilic nature of fabrics, provide antibacterial characteristics, and reduce odors. This work studies the release of TiO2 NPs from various commercial textile products which do not advertise that TiO2 NPs have been added.
This work demonstrates how Single Cell ICP-MS (SC-ICP-MS) can be used to monitor gold nanoparticle uptake by algae with PerkinElmer's NexION ICP-MS.
This work demonstrates the ability of PerkinElmer's NexION 2000 ICP-MS to perform accurate, stable analyses of blood and serum samples, leveraging the benefits of the Universal Cell and the ability to use three cell gases in a single method.
The United States Pharmacopeia (USP) has announced that its new standards for elemental impurities in drug products will be implemented on January 1, 2018. General Chapters <232> and <2232> specify the list of elements and their permissible daily exposure (PDE) limits based on the route of administration.
This work investigated the transfer of Ag and CuO nanoparticles from consumer products via simulated dermal contact by using textile wipes as a surrogate using PerkinElmer’s NexION ICP-MS single particle analyzer with the unique Syngistix Nano Application software module for data collection and analysis
Learn more about our various testing methods and applications for cannabis analyses by reading through our Cannabis Testing brochure.
PerkinElmer's NexION 2000 ICP-MS is the most versatile ICP-MS on the market, featuring an array of unique technologies that combine to deliver the highest performance no matter what your analytical challenge.
With instruments that are the industry standard worldwide, PerkinElmer accessories, consumables, methods and application support meet the most demanding requirements and are the preferred choice in thousands of laboratories globally.
This guide provides a basic overview of the most commonly used atomic spectroscopy techniques and provides the information necessary to help you select the one that best suits your specific needs and applications.
Look to PerkinElmer for all of your consumables and supplies for your NexION 1000 or 2000 ICP-MS system.
PerkinElmer ICP-MS instruments are complete systems with the exception of the following items which must be provided by the customer: electrical power, exhaust vents, argon gas supplies with approved regulator, cell gas supply with approved regulators
PerkinElmer’s Syngistix Enhanced Security software for AA, ICP and ICP-MS meets the special needs of highly regulated labs such as those that must comply with the U.S. FDA’s 21 CFR Part 11 regulations.
PerkinElmer's NexION 1000/2000’s patented RF generator combined with the novel design of the self-cooling LumiCoil RF coil provides a reliable plasma source for a wide range of demanding trace-element detection applications.
PerkinElmer’s All Matrix Solution system provides a number of benefits to simplify analysis of high-matrix samples with the NexION family of ICP-MS instruments.