For laboratories needing the best in both flame and THGA furnace atomic absorption (AA), the PinAAcle™ 900T is a combined flame/longitudinal Zeeman furnace system.
false falseYou successfully added item(s) to your cart
The PinAAcle 900T has the flexibility to switch between flame and furnace in seconds, and its high light throughput optical system, combined with a solid-state detector, provides the highest-quality efficiency and signal-to-noise performance of any AA system on the market. In addition, it features cutting-edge fiber optics for improved detection limits and TubeView™ color furnace camera for easier autosampler tip alignment and sample dispensing, as well as to monitor drying and pyrolysis during analysis for simpler method development. All of this in the smallest flame/furnace AA footprint, saving valuable bench space.
The PinAAcle 900T is controlled by the new Syngistix™ for AA Software, a workflow-based software designed to speed and simplify the journey from sample to results across a wide range of atomic absorption techniques.
21 CFR Part 11 Compatible | Yes |
---|---|
Height | 64.0 cm |
Model Name | PinAAcle 900T |
Portable | No |
Product Brand Name | PinAAcle |
Warranty | 1 Year |
Weight | 141.0 kg |
Width | 95.0 cm |
The performance of this method was validated by assessing the Standard Reference Materials (SRMs) from the US National Institute of Standards and Technology (NIST) and China National Institute of Metrology (NIM) as well as by comparing these results with those obtained using inductively coupled plasma mass spectrometry (ICP-MS) after complete sample digestion by microwave method.
This application note describes an accurate and reliable microwave-assisted sample pretreatment procedure for the determination of arsenic, cadmium and lead in spices using graphite furnace atomic absorption spectrophotometry (GFAAS).
Increased knowledge about the nutrient content of biological organisms is essential for a thorough understanding of ecological stoichiometry and nutrient transport in and among ecosystems.
The efficient production of these nutritionally fortified breakfast cereals requires careful formulation and uniformity batch to batch. Ongoing analytical measurement of nutritional additives and the total micronutrient content in the cereal is one way in which food producers can quantify the quality and consistency of their cereal products. The ability to quickly, accurately, and easily analyze their samples is also key to timely data reporting, allowing real-time batch adjustments to be made and enhancing continuous process control. Food producers must also meet nutritional labeling guidelines which require an accurate assessment of micronutrients for regulatory labeling compliance.
This work demonstrates the ability to accurately measure nutritional elements in a variety of fresh and dried fruits by flame atomic absorption using a FAST Flame sample automation for high sample throughput.
This work demonstrates the ability to rapidly and accurately measure nutritional elements in fruit juices using flame AA with a FAST Flame sample automation system.
This work demonstrates the ability to accurately measure nutritional elements in a variety of milk types by flame atomic absorption using FAST Flame sample automation for high sample throughput.
Soil is used in agriculture, where it serves as the primary nutrient base for the plants. Soil material is a critical component in the mining and construction industries. Soil serves as a foundation for most construction projects.
The fertilizer industry helps to ensure that farmers have the nutrients they need to grow enough crops to meet the world's requirements for food, feed, fiber and energy.
Graphite furnace atomic absorption spectrophotometry (GFAAS) has been one of the more reliable techniques for the analysis of heavy metals in spices and is therefore the preferred analytical method.
For many years, graphite furnace atomic absorption spectrophotometry (GFAAS) has been a reliable technique and the preferred method for this heavy metals analysis of tea leaves.
Elemental analysis of fuel oil is an important step in quantifying its quality. While ICP-OES and ICP-MS instrumentation may receive more attention when it comes to metals analyses, FAAS is a viable option particularly in the petroleum industry.
Arsenic can find its way into food through a variety of paths. In the recent past, various organic arsenicals were used as herbicides and antimicrobial agents in growth fields as well as applied directly on fruits and fruit trees.
Contamination of industrial and municipal water supplies with arsenic (As), selenium (Se), and mercury (Hg) can occur from natural deposits, industrial discharge, runoff from mining, landfill and agricultural operations.
Ingestion of trace elements from food can be linked to nutrition, disease, and physiological development. Whether they are needed for proper nutritional value or contain toxic elements, the presence of major and minor elements in food needs to be verified to help determine health effects for the consumer. Acute or chronic exposure to heavy metals can lead to damaged nervous system function and have detrimental effects on vital organs. Food safety laboratories performing these analyses are often high-throughput and require a detection tool that is efficient and cost effective.
This work demonstrates the ability to measure trace levels of various metals in ultrapure acids and photoresist stripper solutions by graphite furnace atomic absorption.
This work demonstrates the ability to measure several elements in beer with Flame atomic absorption using the PinAAcle 900. No significant differences were observed between beers in glass bottles or metal cans.
This work demonstrates a rapid, accurate method for trace-level analysis of lead (Pb) and cadmium (Cd) in rice grains using fast digestion coupled with the PinAAcle 900T GFAAS with longitudinal Zeeman background correction.
There is an increasing need to monitor the essential element levels in food samples at ever decreasing concentrations. For this purpose, very sensitive, yet rapid and inexpensive methods are necessary. The quantification of trace metals in food samples has routinely been carried out by ICP-OES, ICP-MS, graphite furnace atomic absorption (GFAA) and flame atomic absorption (FAA). Compared with other techniques, FAA has the characteristics of good precision and simplicity with lower cost and minimum operator proficiency.
This work demonstrates the ability of the PinAAcle 900 flame AA spectrometer to measure Cu, Fe, and Mn in wines to comply with Chinese wine import regulations coupled with FAST Flame sample automation for increased throughput.
This work demonstrates the analysis of mineral elements in a variety of drinking waters using the PinAAcle 900 AA spectrometer coupled with a FAST Flame accessory.
There are many mineral dietary supplements available in today’s marketplace to ensure that mineral deficiencies do not occur in one’s diet. The mineral content of these products must be verified for quality control purposes.
The determination of the inorganic profile of oils is important because of the metabolic role of some elements in the human organism. On the one hand, there is knowledge of the food's nutritional value, which refers to major and minor elements.
Precise and accurate measurements at the regulated levels are an important factor for assuring safe drinking water. U.S. EPA Method 200.91 is the method cited by EPA, Health Canada, and the WHO for the use of graphite furnace atomic absorption spectroscopy (GFAAS). In evaluating a GFAAS system for determination of these elements, it must provide good sensitivity, low noise, limited drift, and accuracy in matrices with high salt content (hard water) that might be found in drinking waters. In this work, the PinAAcle™ 900T, with a unique optical system, is evaluated for the use of EPA Method 200.9 for As, Cd, Pb, Se, and Tl in drinking waters.
PerkinElmer’s PinAAcle 900 AA spectrometers offer an array of exciting advances and a variety of configurations and capabilities to deliver the performance you need.
With instruments that are the industry standard worldwide, PerkinElmer accessories, consumables, methods and application support meet the most demanding requirements and are the preferred choice in thousands of laboratories globally.
Sample preparation is one of the most critical steps in your analytical process. Often accounting for 60% of your analytical timetable, it has a fundamental impact on laboratory throughput and analytical performance. Any errors within the sample preparation process will undermine the quality of your food data at all subsequent stages of your analysis. Here are five tips to improving your sample digestion for food samples.
This guide provides a basic overview of the most commonly used atomic spectroscopy techniques and provides the information necessary to help you select the one that best suits your specific needs and applications.
This document provides detailed instructions regarding the space, accessories and utilities required to operate PerkinElmer’s PinAAcle family of atomic absorption (AA) spectrometers (500 and 900 series) and other major AA accessories.
The production of high-quality graphite components for atomic absorption spectroscopy requires stringent quality control. To ensure high quality and consistency, a specific high-density base graphite material has been developed for use with PerkinElmer graphite furnace systems.