check quantity

Deuterium Lamp (PDA Plus)

The Flexar Series 200/200a EP Photo Diode Array Detector provides true UV/VIS detection and high resolution spectral data. The excellent signal-to-noise characteristics make it ideally suited for low-volume or low concentration samples.

Part Number
List Price
Your Price
1080.00 USD
Buy Now

Please enter valid quantity

Please log in to add favorites.



Some functional attributes include:

  • Voltage: 90 V
  • Voltage Type: Vdc
  • Current [from]: 270 mA
  • Current [to]: 330 mA
  • Ignition Voltage: 2.5 V
  • Ignition Voltage Type: Vdc
  • Length: 59 mm
  • Diameter: 30 mm
  • Material: UV GLASS WINDOW
  • Light Aperature: 0.5 mm

Resources, Events & More
  • All

Application Note

A Robust Method for the Analysis of Commonly Used Sunscreen Compounds for Compliance with New FDA Regulations

Over time, exposure to ultra violet (UV) ,radiation from the sun or tanning beds can ,damage the skin’s cellular DNA, resulting in ,mutations that cause 3.5 million cases of skin ,cancers and about 11,500 deaths in the U.S. ,each year, for a total cost of nearly $2 billion. ,There are three types of UV: UVC, UVB, and ,UVA.

Analysis of Biocides with the PerkinElmer Flexar FX-15 UHPLC System Equipped with a PDA Detector

Biocides are chemical substances that are used to kill or inhibit harmful organisms. Biocides have a wide range of applications in consumer and industrial products.

PDF 955 KB
Analysis of Chlorophenols in Water by UHPLC with PDA Detection

This application will focus on the solid phase extraction (SPE) and HPLC analysis of chlorophenols in three tap water samples.

PDF 989 KB
Analysis of Color Additives in Beverages with the PerkinElmer Flexar FX-15 System Equipped with a PDA Detector

Dyes are used to intensify the color of food products and make them look tempting. They are also used to minimize color variation, and to prolong color stability on shelf. This application note presents a fast and robust HPLC method for the determination of dyes in beverages. Method conditions and performance data including precision and linearity are presented. A popular orange soda is analyzed and the type and amount of dyes used are confirmed.

PDF 924 KB
Analysis of Common Antioxidants in Edible Oil with the PerkinElmer Flexar FX-15 System Equipped with a PDA Detector

Phenolic antioxidants and ascorbyl palmitate are commonly used in food to prevent the oxidation of oils. Oxidized oils cause foul odor and rancidity in food products.

Analysis of Drug Substances in Common Cold Medicines with the PerkinElmer Flexar FX-15 System Equipp

The misuse of cold remedies can be prevented by appropriate medical indications and accurate label claims. To that end, the U.S. Food and Drug Administration and the pharmaceutical industry have made it a standard procedure to routinely test drug products to ensure the accuracy of the amount of active ingredients. This application note presents a method for the simultaneous analysis of acetaminophen, dextromethorphan and phenylephrine. Method conditions and precision are presented. A cold medicine tablet is analyzed and the type and amount of active ingredient are confirmed.

PDF 823 KB
Analysis of Fat-Soluble Vitamins by UHPLC Using UV Detection

In 2009, the United States Pharmacopeial Convention introduced the USP Dietary Supplements Compendium (DSC) – an industry directed resource featuring regulatory guidance, documents, supplemental information, and reference tools.

Analysis of Ginsenosides in Ginseng Root with the PerkinElmer Flexar FX-15 System Equipped with a PDA Detector

Ginseng has been used as an herbal medicine in Asia for over two thousand years for its purported various health benefits, including antioxidant, anticarcinogenic, antiinflammatory, antihypertensive and anti-diabetic. The pharmacologically active compounds behind the claims of ginseng’s efficacy are ginsenosides; their underlying mechanism of action although not entirely elucidated appears to be similar to that of steroid hormones. There are a number of ginseng species, and each has its own set of ginsenosides.

PDF 511 KB
Analysis of Isoflavones in Soy Products by UHPLC with UV Detection

The goal of this work was to develop a simpler, faster and reliable LC method for the analysis of the six most widely-used isoflavones in soy products.

Analysis of Isoflavones with the PerkinElmer Flexar FX-15 UHPLC System Equipped with a PDA Detector

Foods from plants are complex mixtures of chemicals including both essential nutrients and biologically active non-essential nutrients, referred to as phytochemicals.

PDF 992 KB
Analysis of Patulin in Apple Juice by UHPLC with UV Detection

The focus in this work was to develop a simple, robust, and reliable LC method for the analysis of patulin in apple juice.

Analysis of Vanillin, Ethyl Vanillin, and Coumarin in Vanilla Extract Products by UHPLC with PDA Detection

With the focus on possible vanilla extract adulteration, this application focuses on the HPLC separation and quantitation of vanillin, ethyl vanillin, and coumarin in three store-bought vanilla extracts.

Analysis of the Mycotoxin Patulin in Apple Juice Using the Flexar FX-15 UHPLC-UV

Patulin is produced by various molds, which primarily infect the moldy part of apples. Removing the moldy and damaged parts of the fruit may not eliminate all the patulin because some of it may migrate into sound parts of the flesh.

PDF 913 KB
Cannabinoid Monitoring in Dried Cannabis Flowers

This application describes an analytical method for the chromatographic separation and quantitative monitoring of seven primary cannabinoids, including THC and THC-A, in cannabis extracts by HPLC with PDA detection. Naturally occurring cannabinoids, the main biologically active component of the cannabis plant, form a complex group of closely related compounds, of which 113 are known and 70 are well described. Of these, the primary focus has been on ?9-tetrahydrocannabinol (THC), as the primary active ingredient due to its pharmacological and toxicological characteristics, upon which strict legal limits have been enforced.

Cannabinoid Monitoring in a Variety of Edibles

This application describes the sample preparation and analytical method for the chromatographic separation and quantitative monitoring of twelve primary cannabinoids in the extracts of several food matrices by HPLC, using photodiode array (PDA) detection. The method provides exceptional chromatographic repeatability and affords LOQs well below the current concentration levels of interest for cannabinoids in edibles. Thereupon, the method/procedure defined herein can be expected to fulfill the essential task of ensuring product uniformity and cannabinoid screening in edible foods.

Determination of a-acids in Hops and Beers

One essential aspect of the quality control in beer brewing is making sure that the type and amount of a-acids are the same from batch to batch, and that their transformation into the bitter iso-a-acids during the brewing process gives individual brand its recognizable taste consistently . This application note presents a straightforward method to determine the type and amount of a-acids in pellets from five hops varieties. An American IPA beer is analyzed to confirm the presence of isomerized a-acids.

PDF 906 KB
Fast Analysis of Fat-Soluble Vitamins Using Flexar FX-10 and Chromera CDS

Sweeteners are low or zero-calorie sugar substitutes that are added in drinks, processed foods and pharmaceutical products to provide the sweet taste of table sugar, which is also called sucrose.

PAHs in Surface Water by PDA and Fluorescence Detection Application Note

Heightened awareness of polycyclic aromatic hydrocarbons (PAHs) has become prevalent due to urban background levels found in surface water, soil, air, cosmetics and food. They are generated by the combustion of fossil fuels and are always found as a mixture of individual compounds that differ in behavior, environmental distribution, and their effect on biological systems. PAHs encompass a wide molecular weight range, differing based on their physical, chemical, and biological characteristics. PAHs in surface water result from a variety of sources including residential, industrial and commercial outlets, streets and parking lots, and atmospheric fallout. In this application, via a spiking experiment, we explore the levels at which PAHs in surface water can be monitored by UHPLC with a sub-2 µm particle sized column combined with photo diode array (PDA) and fluorescence (FL) detection.,

Quantification of Benzodiazepines in Plasma Using UHPLC Time-of-flight Mass Spectrometry

Presented is an alternative technique to quantitate benzodiazepines in plasma using a rapid protein precipitation method with a fast LC separation method in combination with TOF-MS.

Rapid UHPLC Determination of Common Preservatives in Cosmetic Products

This application note will present a fast, sensitive and reliable UHPLC analysis of six common parabens. A PerkinElmer Flexar FX-15 UHPLC system fitted with a Flexar FX PDA photodiode array detector was used. The separation was achieved using a PerkinElmer Brownlee Analytical C18, 1.9 µm 50 mm x 2.1 mm column.

PDF 960 KB
Rapid UHPLC Determination of Nine Common Herbicides in Drinking Water with the PerkinElmer Flexar FX

Water polluted by herbicides leach and runoff can cause human health problems including cancer tumors, reproduction deformity, disruption of the endocrine system and DNA damage. This application presents a sensitive and robust liquid chromatography method to test nine widely used herbicides (Figure 1), using a 3 µm UHPLC column to achieve very high throughput at a low flow rate to reduce testing time and solvent consumption. The throughput is compared to that of a conventional C18 HPLC column. Method conditions and performance data including precision and linearity, are presented.

PDF 750 KB
Simultaneous Analysis of Nine Food Additives with the PerkinElmer Flexar FX-15 System Equipped with a PDA Detector

This application note presents a fast and robust liquid chromatography method to simultaneously test nine widely used additives. Among the additives tested are: preservatives (benzoic acid, sorbic acid, dehydroacetic acid and methylparaben); artificial sweeteners (acesulfame potassium, saccharin and aspartame); flavoring agent (quinine); and a stimulant (caffeine).

PDF 938 KB
The Analysis of Sunscreen-Active Ingredients and Parabens in Lotions and Lip Balms by UHPLC with PDA Detection

Individuals typically use 5-20 cosmetics per day, many of which contain sunscreen to prevent skin damage from the sun’s radiation, and antimicrobial preservatives called parabens. Although sunscreen-active ingredients are designed to block UV radiation, some cell damage may be caused when these ingredients are illuminated by sunlight after absorption into the skin. For example, oxybenzone, an ingredient considered safe by the FDA (Food and Drug Administration), is believed to contribute to the recent rise in melanoma cases by increasing the production of DNA-attacking free radicals upon UV exposure. Additionally, studies have shown oxybenzone to behave similarly to the hormone estrogen, suggesting that it may also contribute to the development of breast cancer. Parabens are absorbed through the skin via cosmetic applications and can be found in nearly all adult urine samples, with the highest concentrations observed in adult females and adolescents. Furthermore, parabens are thought to have estrogenic activity, which affects the expression of genes regulated by the natural form of estrogen, leading to early puberty in girls and an increased risk for the development of breast cancer.

PDF 890 KB
The Qualitative and Quantitative Analysis of a-Acids in Hops and Beers by UHPLC with UV Detection

Alpha acids (a-acids) are a class of chemical compounds of primary importance in the production of beer. They are found in the resin glands of the flowers of the hop plant (Humulus lupulus) and are normally added to the boil after mashing the grains, providing beers with their aroma and bitter taste. The a-acids found in hop resins are isomerized to form the iso-a-acids during prolonged boiling in the wort. The degree of isomerization and the amount of bitter taste produced by the addition of hops is highly dependent on the type of hop and the length of time the hops are boiled. Longer boil times will result in isomerization of more of the available a-acids, making the beer more bitter. The a-acid percentages vary within specific varieties of hops, depending on the growing conditions, drying methods, age of hops, climate and other factors. Figure 1 shows the common a-acids and iso-a-acids involved in the beer brewing process. Since the quality and quantity of a-acids is so important in consistently providing individual beers with their recognizable taste, it is essential to monitor their amount in hops and beers and to monitor the formation of the iso-a-acids during the beer brewing process. The focus of this application note is to provide an easy, straightforward, and robust analytical method for establishing the type and amount of a-acids in hops pellets, as well as determining the amount of a-acids and iso-a-acids in various beers.



QSight Triple Quadrupole LC/MS/MS

Whether you’re a lab manager or a bench chemist, you know firsthand how things are changing quickly in food and environmental analysis. And your lab needs to change to keep pace.



Streamline Your Speciation Workflow Flyer

Many modern laboratories, like yours, are expanding their analytical portfolio to include HPLC-ICP-MS for metal speciation to gain better insight about ion mobility, bioavailability, metabolism and toxicity. Our NexSAR HPLC-ICP-MS Speciation Solution brings together our inert NexSAR Speciation Analysis Ready HPLC system and the revolutionary NexION® ICP-MS in a seamless platform. Integrated using Clarity software, all levels of expertise are catered to through an intuitive solution with multi-user and multi-permission functionality.

PDF 427 KB