Sort by
1-21 of 21 Products & Services
Sort by
1-5 of 5 Business Insights
Whether you’re familiar with high-content screening and are looking to exploit the increased physiological relevance of complex 3D cell models, or you want to take your analysis of 3D cell models to the next level, migrating from simple plate-reader assays to a high-content approach, you’ll need the right tools and strategies to overcome the challenges these models present.
High-content assays using 3D objects such as cysts or organoids can be challenging from the perspectives of both image acquisition and image analysis. In this technical note we describe how to image and analyze epithelial Madin-Darby canine kidney (MDCK) cysts in 3D on the Operetta CLS™ high-content analysis system.
We address:
Multicellular 3D “oids” (tumoroids, spheroids, organoids) have the potential to better predict the effects of drug candidates during preclinical screening. However, compared to 2D cell monolayers, assays using 3D model systems are more challenging.
In this technical note we describe how to image and analyze solid spheroids in 3D using the Opera Phenix™and Operetta™CLS high-content screening systems and Harmony® 4.8 imaging and analysis software.
We address:
Live cell imaging has gained importance within drug discovery over recent times, as researchers look for more meaningful insights into cellular behavior and function. However, setting up live cell experiments can be challenging, as temperature, CO2 and evaporation need to be controlled to ensure optimal cell growth conditions. In this technical note, we demonstrate:
Extracellular signal-regulated kinase (ERK) is a key component in the regulation of embryogenesis, cell differentiation, cell proliferation, and cell death. The ERK signaling pathway is altered in various cancer types and is frequently investigated as a target for therapeutic intervention. This application note describes how a live cell FRET assay to study ERK signaling was performed on the Operetta CLS™ high-content analysis system. The optimized design of the FRET-based biosensor, the high-quality imaging of the Operetta CLS system and the easy-to-use image analysis tools of the Harmony® software contribute to the robustness of the high-content assay.