PerkinElmer
check quantity

LAMBDA 850+ UV/Vis Spectrophotometer

For more than 55 years, PerkinElmer has been an industry leader in UV/Vis/NIR and UV/Vis instrumentation and continues to set benchmarks with the innovative LAMBDA™ Series. Our LAMBDA 850+ UV/Vis spectrophotometer is one of our highest performance UV/Vis system designed for analysis of coatings, high performance glass, and components in both research and manufacturing. The instrument meets industry standards for ultra-high performance, flexibility, and convenience.

Part Number L850
Buy Now

Please enter valid quantity

Please log in to add favorites.

NULL OR EMPTY CART

Detail Information

Choose the LAMBDA 850+ for ultra-high UV/Vis performance for wavelengths between 175 nm and 900 nm, for applications such as sun protection, reflectance properties of flat panel display screens, paint films, transmission and reflectance characterization of glass and solar cells.

The LAMBDA 850+ offers unmatched flexibility by providing you the choice to configure systems to suit your needs. From selection of detectors to accessories that provide the most convenient and flexible approach to sampling, the Lambda 850+ is UV/Vis Spectrophotometer is designed for maximum versatility, optimal performance and value:

  • Universal Reflectance Accessory – Remove the standard detector and snap in this innovative accessory for automatically measuring sample angles
  • Total Absolute Measurement System - The Total Absolute Measurement System (TAMS) provides the highest degree of flexibility and accuracy in measuring specular, as well as diffuse transmission, and reflectance capabilities, with upgradeable detector configuration
  • General-Purpose Optical Bench – Swap in our GPOB to accommodate larger samples such as lenses, beamsplitters and optics
  • Snap-in integrating spheres to capture diffuse and specular reflectance. Available in 100 and 150 mm, with 8° reflectance and center mount capability
  • Dual sampling compartments offer more options and unmatched sample compartment size 
  • Wide range of sampling modules requiring only seconds to change

Software

Unleash the power of your LAMBDA 850+ UV/Vis/NIR spectrophotometer with UV WinLab software designed for operational simplicity and the power to address the most challenging analyses. Our Enhanced Security (ES) UV WinLab software is designed for busy pharmaceutical, manufacturing, industrial, food, or academic laboratories in regulated environments that require compliance with US FDA 21 CFR Part 11 regulations.

Specifications

21 CFR Part 11 Compatible Yes
Height 30.0 cm
Interface Tungsten-halogen and Deuterium
Maximum Temperature 35 °C
Minimum Temperature 15 °C
Model Name LAMBDA 850
Operating Range 175 - 900 nm
Portable No
Product Brand Name LAMBDA
Warranty 1 year
Weight 77.0 kg
Width 102.0 cm
Resources, Events & More
  • All

Application Note

Acquisition of High Quality Transmission Spectra of Ultra-Small Samples Using the LAMBDA 950 UV/Vis/NIR and LAMBDA 850 UV/Vis Spectrophotometers

The measurement of very small samples in transmission mode often poses problems. Large-scale losses of energy, scattered light and high backgrounds all impose severe performance requirements on UV/Vis and UV/Vis/NIR instruments. Using small beam apertures can lead to high background absorbance levels, often well over 2A.

PDF 139 KB
Design Considerations for a Variable Angle Absolute Reflectance Accessory LAMBDA® 950/850/650

The accurate measurement ofspecular reflectance over a substantialrange of angles and a widerange of wavelengths from theUV through NIR is a prerequisite to the design and manufacture ofa wide variety of modern opticalcomponents. In designing a systemDesign Considerations for a VariableAngle Absolute Reflectance AccessoryFor the LAMBDA 950/850/650 UV/Vis/NIRand UV/Vis Spectrophotometers.

PDF 209 KB
Directional Reflection Measurements on Highly Reflecting Coatings

We developed spectrophotometry accessories for measuring absolute reflection on highly reflecting samples, not only at near-normal incidences but also at oblique incidences for incident angles up to more than 80 degrees. The accessories are designed for use with a high performance UV/Vis/NIR industrial spectrophotometer and are widely used for the accurate characterisation of mirrors.

PDF 3 MB
High Absorbance Scanning with the PerkinElmer LAMBDA 850 UV/Vis and LAMBDA 950/1050 UV/Vis/NIR Spectrophotometers

In materials research there is sometimes a need to scan high absorbance samples such as laser protection lenses, optical filters, and polarization materials. Such sample types often need to be measured across the whole UV, Vis and NIR ranges of the electromagnetic spectrum.

PDF 2 MB
Measuring Absorptance (k) and Refractive Index (n) of Thin Films with the PerkinElmer LAMBDA 1050+ High Performance UV/Vis/NIR SpectrometersUV/Vis Spectroscopy

An optical coating consists of a combination of thin film layers that create interference effects used to enhance transmission or reflection properties for an optical system. How well an optical coating performs is dependent upon the number of factors, including the number of layers, the thickness of each layer and the differences in refractive index at the layer interfaces. The transmission properties of light are predicted by wave theory. One outcome of the wave properties of light is that waves exhibit interference effects. Light waves that are in phase with each other undergo constructive interference, and their amplitudes are additive. Light waves exactly out of phase with each other (by 180°) undergo destructive interference, and their amplitudes cancel. It is through the principle of optical interference that thin film coatings control the reflection and transmission of light.

PDF 2 MB
Polymer Applications Compendium

Today’s plastics are some of the most used materials on a global volume basis. Broadly integrated into today’s industrial and commercial lifestyles, they make a major, irreplaceable contribution to virtually every product category.

In this compendium you will find a wide range of applications for polymers, plastics, rubbers and advanced materials. Discover how to put these applications to work for you simply and efficiently.

PDF 52 MB
Reflectance Measurements of Materials Used in the Solar Industry

The primary goal of this technical note is to guide the user through the accessory selection process for different specular/ diffuse samples. This will be achieved by measuring identical samples with varying contributions of diffuse and specular reflection, on three different reflection accessories, and then comparing the spectra generated.

PDF 636 KB
The General Purpose Optical Bench (GPOB) for the LAMBDA 650 and 850

The LAMBDA™ 650/850/950 family of UV/Vis and UV/Vis/NIR spectrophotometers are purposedesigned to enable a wide range of sample types to be analyzed, no matter the shape or dimensions.

PDF 84 KB

Brochure

Why Limit Yourself, High Performance UV\VIS\NIR Instruments

LAMBDA 1050/950/850 Spectrophotometers are advancing what's possible for your testing capabilities, whether it's measuring the absolute reflectance of coatings at various angles with our LAMBDA™ 950 or analyzing highly absorbing liquids with the LAMBDA 850. Now, with the LAMBDA 1050, we're pushing the limits even more.

PDF 1 MB

Case Study

A Spectroscopic In Vitro Method for the Calculation of Sunscreen SPF Values

Sunscreen protects skin by either absorbing or reflecting the harmful ultraviolet rays, preventing them from reaching the skin. Using sunscreen while exposed to the sun can greatly reduce the chances of damaging skin cells, and developing cancer. For this study the PerkinElmer® Lambda™ 1050 equipped with a 150 mm integrating sphere will be use to collect scatter transmission data for sunscreen placed on a tape substrate. Testing sunscreen on a tape model of human skin to calculate the SPF value is more convenient and economical than testing on human skin.

PDF 1 MB

Poster

Advanced Solutions for Polymers and Plastics Poster

The Polymer Market consists of a huge diversity of manufacturers of industrial products running many different processes yet still facing similar challenges. There is more and more pressure to achieve high product quality and reduce costs in order to stay one step ahead of the competition.

PDF 3 MB

Product Information Bulletin

Product Note

Regulatory Compliance Certification

Specification Sheet

LAMBDA Flex Series

,LAMBDA Flex Series, LAMBDA Flex Systems, UV/Vis, UV/Vis/NIR, UV Visible, LAMBDA 650, LAMBDA 750, LAMBDA 850, LAMBDA 950, LAMBDA 1050, PbS Sphere, InGaAs Sphere, Diffuse Transmission Sphere, URA, GPOB, ES, Enhanced Software, 21 CFR part 11, Sell Sheet

PDF 500 KB

Technical Note

Linearity Measurements in the Visible Region on a LAMBDA 850+/1050+ Using Hellma Linearity Filters

This note demonstrates the use of Hellma® linearity filters to study the linearity of the PerkinElmer® high performance LAMBDA™ instruments (LAMBDA 850, 950 and 1050) in the visible region of the spectrum.

PDF 379 KB
Particle Characterization of UV Blocking Sunscreens and Cosmetics Using UV/Visible Spectroscopy

Many cosmetic products now incorporate sunblock components to protect the skin from harmful ultra violet radiation. These products can be identified by the SPF value quoted on the label. A large proportion of these blocking components are nanoparticles that protect the skin, not by absorbing the harmful radiation, but by scattering it away from the skin. The most commonly used are nanoparticles of zinc oxide and titanium dioxide. This paper will discuss a new method for characterization and quantitation of nanoparticles in sunscreens and cosmetics via the use of UV/Visible spectroscopy. The method utilizes a 150 mm integrating sphere equipped with center mount and is able to quantitate and compare the contributions of absorbance, large particle scattering, and nanoparticle scattering.

PDF 2 MB

FAQs

Expand all
To remove the halogen lamp follow the steps below:
  1. Switch off the spectrometer and unplug the line power cord.
  2. Remove the lamp compartment cover.
    Lift vertically from the handhold on the rear of the Lambda 850+/1050+. Press down the catch and push the cover off backwards on a Lambda 800/900, or to the left on the other Lambda instruments.
  3. If necessary, remove the lamp baffle by loosening and removing the two screws on the top of the baffle and lifting the baffle vertically upward.
    NOTE: Instruments made prior to January 1, 1997 may have a different type of lamp baffle as shown in Figure 2. This is held in place with the same thumbscrew used to hold the lamp in place. Loosen the thumbscrew just enough to allow the lamp baffle to be removed.
  4. Remove the lamp assembly from the bracket by slackening the thumbscrew and pulling the lamp mount vertically upward.
    Save the thumbscrew, as it will be used with the replacement lamp assembly.
  5. Carefully pull the white ceramic connector from the rear of the halogen lamp.
  1. Unpack the new lamp assembly, taking care to hold it only by the metal mount to prevent fingerprints on the lamp window.
    Fingerprints on the lamp window cause hot spots during lamp operation, which can lead to premature lamp failure.
  2. Attach the thumbscrew to the back of the new lamp assembly.
    Make sure you leave enough room so that you can slide the thumbscrew onto the mounting bracket.
  3. Carefully push the white ceramic connector firmly onto the pins on the base of the lamp.
  4. Slide the new lamp assembly with the thumbscrew attached onto the mounting bracket as shown below.
    Make sure that the notch at the base of the lamp assembly fits securely over the alignment stud on the mounting bracket, so that the lamp mount is flush to the mounting bracket.
  5. If necessary, wipe the lamp window with a soft cloth moistened with alcohol to remove dirt.
    The dirt would otherwise be burned in when the lamp is hot.
  6. Replace the lamp baffle and secure it into place.
  7. Replace the lamp compartment cover and plug the line power cord into the spectrometer.