check quantity

IVIS SpectrumBL High-Throughput In Vivo Optical Imaging System

The IVIS® SpectrumBL is an advanced high-throughput 2D and 3D optical imaging system designed to improve quantitative outcomes of bioluminescent, chemiluminescent and Cerenkov in vivo imaging.

Part Number CLS137325
Buy Now

Please enter valid quantity

Please log in to add favorites.


For research use only. Not for use in diagnostic procedures.


The SpectrumBL supports 10 mice simultaneous imaging for true high throughput imaging for longitudinal studies to support large cohorts of mice. It uses a patented optical imaging technology to facilitate non-invasive longitudinal monitoring of disease progression, cell trafficking and gene expression patterns in living animals.

Features & Benefits:

  • Ultra high-sensitivity to support in vivo bioluminescence, chemiluminescence and Cerenkov imaging
  • High-throughput (10 mice) imaging enablement
  • Optimized workflow to support Cerenkov Imaging
  • High resolution (to 20 microns) with 3.9 cm field of view
  • 3D diffuse tomographic reconstruction for bioluminescence
  • Co-register 3D optical data with microCT, PET/SPECT and MRI
  • NIST traceable absolute calibration
  • Optional upgrade path to an IVIS Spectrum for full fluorescence enablement


21 CFR Part 11 Compatible No
Height 206.0 cm
Imaging Modality Optical Imaging
Portable No
Product Brand Name IVIS
Width 65.0 cm
Resources, Events & More
  • All


In Vivo Imaging Solutions eBook

Researchers trust our in vivo imaging solutions to give them reliable, calibrated data that reveals pathway characterization and therapeutic efficacies for a broad range of indications. Our reagents, instruments, and applications support have helped hundreds of research projects over the years. And our hard-earned expertise makes us a trusted provider of pre-clinical imaging solutions— with more than 9,000 peer reviewed articles as proof.


Featured Publication Note

Regulatory Compliance Certification

Software Downloads

Technical Note


Auto-exposure technical note for IVIS pre-clinical imaging systems

Background ROI

Subtracting Background ROI from a Sequence

DLIT 1 Setup

DLIT setup and acquisition IVIS pre-clinical imaging systems. Bioluminescence Tomography or Diffuse Light Imaging Tomography (DLIT) utilizes the data obtained from a filtered 2D bioluminescent sequence in combination with a surface topography to represent the bioluminescent source in a 3D space. Utilizing DLIT, you can determine the depth of sources in your animal and calculate the absolute intensity of that source.

DLIT 2 Topography

DLIT 2 Topography technical note for IVIS Spectrum imaging system. The IVIS Spectrum has a laser galvanometer that we routinely use to project the FOV onto the surface of the instrument. It produces the green outline you see on the stage when the door is opened. We utilize this laser to project a series of parallel lines across your subject. We acquire a photographic image (the Structured Light Image) when the lines are projected across the animal and from that image we can calculate the height at points on the back of your subject based on the curvature of these laser lines as they cross over the subject. This height map allows us to reconstruct a shell or isosurface of your animal. This shell is referred to as the Surface Topography and is used in calculating bioluminescent signal depth and intensity during the DLIT 3D source reconstruction.

DLIT 3 Reconstruction

DLIT 3 Reconstruction technical note for IVIS Spectrum imaging systems

Determine Saturation

Determine Saturation for IVIS imaging systems - technical note

Drawing ROIs

Technical notes for Drawing ROIs for IVIS in vivo imaging systems. The circle, square, free draw, or grid (for well plates) can be used to draw your ROIs. ROI selections,are user-specific and are dependent on the model being analyzed. It is irrelevant which shape that is used for a particular ROI.

PDF 669 KB
High Resolution Images

Acquisition of High Resolution Images. This quick reference guide is for those researchers who wish to perform analysis that requires high resolution including in vitro studies when one may want to discern aspects about cell layers, ex vivo tissue imaging, or imaging of tissue slices. You will not need this resolution in most in vivo studies.

Kinetic Analysis of Bioluminescent Sources

Acquiring the most accurate quantitation of your bioluminescent sources requires a close understanding of the underlying kinetics involved in producing and capturing the detected light. After injection, the substrate for your bioluminescent probe will di

Subject ROI

Subject ROI using IVIS imaging systems


Video Article

White Paper

The Role of In Vivo Imaging in Drug Discovery and Development

The primary goal of preclinical imaging is to improve the odds of clinical success and reduce drug discovery and development time and costs. Advances in non-invasive in vivo imaging techniques have raised the use of animal models in drug discovery and development to a new level by enabling quick and efficient drug screening and evaluation. Read this White Paper to learn how preclinical in vivo imaging helps to ensure that smart choices are made by providing Go/No-Go decisions and de-risking drug candidates early on, significantly reducing time to the clinic and lowering costs all while maximizing biological understanding.

PDF 748 KB