PerkinElmer
check quantity

IVIS Lumina X5 Imaging System

High-Sensitivity Optical Meets High-Resolution X-ray

The IVIS® Lumina X5 high-throughput 2D optical imaging system combines high-sensitivity bioluminescence and fluorescence with high-resolution x-ray into a compact system that fits on your benchtop. With an expanded 5 mouse field of view for 2D optical imaging plus our unique line of accessories to accelerate setup and labeling, it has never been easier or faster to get robust data—and answers—on anatomical and molecular aspects of disease.

Part Number CLS148590
Buy Now

Please enter valid quantity

Please log in to add favorites.

NULL OR EMPTY CART

Overview

The IVIS Lumina X5 has all the capabilities of the IVIS Lumina S5 imaging system with integrated industry leading high-resolution x-ray for greater detail. The IVIS Lumina X5 also includes state of the art spectral unmixing features for sensitive multispectral imaging to monitor multiple biological events in the same animal.

 

High-throughput Optical and X-ray Imaging – No Compromise

The IVIS Lumina X5 integrates a 1 inch CCD camera into our benchtop Lumina instrument providing a high throughput 20 x 20 cm FOV sufficient for imaging 5 animals at a time with bioluminescence and fluorescence. Moreover, the large, independently deployed scintillator facilitates X-ray acquisitions of 5 mice and larger rodents up to 500-600 grams with seamless, accurate overlay onto the optical image at any field of view.

As with other IVIS Lumina systems, the X5 is equipped with 26 filters tunable to image fluorescent sources that emit from green to near-infrared. Novel illumination technology effectively increases fluorescent transmission through 900 nm. Additionally, the IVIS Lumina X5 incorporates PerkinElmer's patented Compute Pure Spectrum (CPS) algorithm for spectral library generation software tools to ensure accurate autofluorescence removal, unmixing and fluorophore quantitation.

Standard on all IVIS instruments, absolute calibration affords consistent and reproducible results independent of magnification, filter selection from one instrument to any another IVIS instrument within an organization or around the world.

Industry Leading X-ray Resolution

The IVIS Lumina X5 is equipped with a microfocus X-ray source and geometric magnification that when combined achieve industry leading X-ray resolution in a 2D optical/X-ray system. This sets a new standard in multimodal 2D imaging resolution. With optical image overlays at every X-ray resolution, never miss underlying anatomical and structural changes. Get more from your data and explore new applications.

IVIS Lumina X5 – A High Throughput Solution

Not only does the IVIS Lumina X5 offer higher throughput via the 1 inch CCD, but it is also compatible with a set of smart animal handling accessories (purchased separately) designed with throughput and safety in mind.

Smart loading trays will allow users to pose animals on the benchtop before placing the tray into the IVIS. Fiducials built into the tray will allow the software to automatically recognize and draw ROIs providing automated animal identification.

Animal trays are designed with ease of use and user safety in mind. No nose cones are required thus minimizing cleanup. All tray parts are autoclaveable for ease of sterilization and when used with the next generation anesthesia unit (RAS-4), strong vacuum capabilities minimize excess gas from escaping thus preventing exposure of users to anesthetic gas.

Finally, Living Image® software brings IVIS technology to life by facilitating an intuitive workflow for in vivo optical, X-ray image acquisition, analysis and data organization. The software’s design creates an intuitive, seamless workflow for researchers of all skill levels. Living Image will support input of unique animal IDs when using chip technologies and readers from third party vendors thus streamlining labeling , setup and subsequent export of data for analysis.

Key Features:

  • High throughput (5 mouse) optical and X-ray
  • High resolution, low dose X-ray with optical overlay
  • Supports mouse and rat imaging
  • Compute Pure Spectrum (CPS) spectral unmixing
  • Full fluorescence tunability through the NIR spectrum
  • Unique accessories to streamline workflow, data acquisition and analysis

Selected Publications:

  • Zhou et al (2021). Dipeptidyl Peptidase-4 modulates Long-chain Acyl-CoA synthetase 4 to Promote Lipid Peroxidation and Regulate Ferroptosis in Pancreatic Cancer. Res Square. https://doi.org/10.21203/rs.3.rs-173980/v1
  • Rupp et al (2021). Therapeutic potential of Fingolimod in triple negative breast cancer preclinical models. Translational Oncology. 14(1): 100926. https://doi.org/10.1016/j.tranon.2020.100926
  • Jiang et al (2020). Combined Treatment With CCR1-Overexpressing Mesenchymal Stem Cells and CCL7 Enhances Engraftment and Promotes the Recovery of Simulated Birth Injury-Induced Stress Urinary Incontinence in Rats. Fontiers in Surgery. 7:40. https://dx.doi.org/10.3389%2Ffsurg.2020.00040
  • Trikha et al (2020). Inhibition of Angiotensin Converting Enzyme Impairs Anti-staphylococcal Immune Function in a Preclinical Model of Implant Infection. Front. Immunol. https://doi.org/10.3389/fimmu.2020.01919
  • Brandon et al (2020). Identification of ovarian high-grade serous carcinoma cell lines that show estrogen-sensitive growth as xenografts in immunocompromised mice. Sci Reports. 10: 10799. https://doi.org/10.1038/s41598-020-67533-1
  • Kelley et al (2020). In vivo Mouse Model of Spinal Implant Infection. Medicine. https://dx.doi.org/10.3791/60560
  • Lefeuvre et al (2020). Effects of topical corticosteroids and lidocaine on Borrelia burgdorferi sensu lato in mouse skin: potential impact to human clinical trials. Sci Reports. 10: 10552. https://doi.org/10.1038/s41598-020-67440-5
  • Liang et al (2019). Idarubicin-loaded methoxy poly(ethylene glycol)-b-poly(l-lactide-co-glycolide) nanoparticles for enhancing cellular uptake and promoting antileukemia activity. Int J Nanomedicine. 14: 543–556. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333394/
  • Karches et al (2019). Bispecific Antibodies Enable Synthetic Agonistic Receptor-Transduced T Cells for Tumor Immunotherapy. Translational Cancer Mechanisms and Therapy. https://doi.org/10.1158/1078-0432.CCR-18-3927

For additional publications, please visit Google Scholar.

Specifications

Height 116.84 cm
Imaging Modality Optical Imaging
Product Brand Name IVIS
Width 48.26 cm
Resources, Events & More
  • All

Application Note

Imaging Oncolytic Virus Infection in Cancer Cells

Aside from the traditional small-molecule chemotherapeutics or targeted therapy agents that have been widely used in the clinic for decades, a new type of cancer therapeutics based on oncolytic viruses has recently gained attention in the field of research. Oncolytic viruses are genetically modif ...

PDF 2 MB
Quantitative Analysis of Bone Erosion Using High-Resolution X-Ray Imaging

Bone erosion is a pathological condition characterized by breaks in the cortical bone surface and loss of the adjacent trabecular bone. Several pathological processes can lead to bone erosion, including malignant tumors, abnormal metabolic processes such as hyperparathyroidism, and chronic inflammat ...

PDF 3 MB

Case Study

Tracking Neuroinflammation Using Transgenic Mouse Models and Optical Imaging

Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease for which there is no cure. Another lethal brain disease is stroke, which occurs when blood supply to the brain is disrupted by a blood vessel that bursts or becomes blocked. Neuroinflammation plays a key role in both of th ...

PDF 1 MB
A Novel Mouse Model Using Optical Imaging to Detect On-Target, Off-Tumor CAR-T Cell Toxicity

CAR T therapy has achieved tremendous success in treating blood malignancies, however treating solid tumors with this therapy has proven to be challenging due to several factors such as on-tumor, off-tumor toxicity.

Read this case study where researchers from University of Pennsylvania crea ...

PDF 1 MB
A Novel Non-Invasive In Vivo Diagnostic Tool for the Assessment of NASH

Non-alcoholic fatty liver disease (NAFLD) describes a progressive pathology that affects the liver. Fat accumulation causes fatty liver (NAFL) or steatosis to develop, which leads to lipotoxicity and in turn induces liver inflammation and apoptosis, resulting in non-alcoholic steatohepatitis (NAS ...

PDF 963 KB

Ebook

In Vivo Imaging Solutions eBook

Researchers trust our in vivo imaging solutions to give them reliable, calibrated data that reveals pathway characterization and therapeutic efficacies for a broad range of indications. Our reagents, instruments, and applications support have helped hundreds of research projects over the years. And ...

PDF 4 MB

Flyer

Best Practices for Designing An Effective In Vivo Fluorescence Imaging Study

Fluorescence molecular imaging is the visualization of cellular and biological function in vivo to gain deeper insights into disease processes and treatment effects. Designing an effective study from the beginning can help save time and resources.

Learn about several important best p ...

PDF 507 KB

Guide

IVISense™ Fluorescent Probe Selector Guide for Oncology Research

The goal of in vivo fluorescence molecular imaging is to enable non-invasive visualization and quantification of cellular and biological functioning to better understand and characterize disease processes and treatment effects earlier within the context of a biological system.

This s ...

PDF 3 MB

Publication Review

In Vivo Imaging of Influenza Virus Infection in Immunized Mice

Influenza is a highly infectious airborne disease with an important societal burden. Annual epidemics have occurred throughout history causing tens of millions of deaths. Even a run-of-the-mill influenza infection can be debilitating to otherwise healthy people, and lethal to those who are elderl ...

PDF 436 KB
Clinically translatable cytokine delivery platform for eradication of intraperitoneal tumors

Proinflammatory cytokine interleukin-2 (IL-2) is of particular interest for cancer immunotherapy as it plays a critical role in the regulation of immune cells such as T cells. Although proinflammatory cytokines have been used to treat various cancers including metastatic melanoma and renal carcin ...

PDF 258 KB
Evaluating a Novel Nanoparticle Platform for Controlled Liraglutide Release in a Type II Diabetes Mouse Model Via Optical Imaging

A large percentage of Type 2 diabetes mortality is related to cardiovascular complications. Consequently, there is a critical need for creating novel therapeutics that not only manage blood glucose levels, but also reduce the risk of developing cardiovascular diseases.

Liraglutide (Lira) is ...

PDF 538 KB

Regulatory Compliance Certification

Software Downloads

Video Article

White Paper

Bioluminescence Resonance Energy Transfer (BRET) to Monitor Protein-Protein Interactions

The ability to image protein-protein interactions (PPIs) in vivo has important implications for a wide variety of biological research endeavors, including drug discovery and molecular medicine. The visual representation, characterization, quantification, and timing of these biological proc ...

PDF 1 MB
Non-Invasive Optical Imaging for Viral Research and Novel Therapeutic and Vaccine Development

Viral diseases have emerged and re-emerged throughout history, and as the human population continues to increase globally, so will the frequency of viral pandemics. Not only have Ebola and COVID-19 demonstrated most recently mankind’s vulnerability to contagious diseases, but also the challenges ...

PDF 2 MB
The Role of In Vivo Imaging in Drug Discovery and Development

The primary goal of preclinical imaging is to improve the odds of clinical success and reduce drug discovery and development time and costs. Advances in non-invasive in vivo imaging techniques have raised the use of animal models in drug discovery and development to a new level by enabling quick ...

PDF 547 KB