check quantity

IVIS® SpectrumCT In Vivo Imaging System

The IVIS® SpectrumCT preclinical in vivo imaging system expands upon the versatility of the IVIS Spectrum by offering 2D and 3D imaging capabilities but includes integrated low-dose microCT ideal for longitudinal studies. The system provides researchers with greater insights into complex biological systems by enabling simultaneous molecular and anatomical non-invasive imaging in animal models.

Part Number 128201
Buy Now

Please enter valid quantity

Please log in to add favorites.


For research use only. Not for use in diagnostic procedures.


The constant horizontal gantry motion and the flat panel detector provide unparalleled performance for low-dose imaging and automated optical and microCT integration. The stable revolving animal platform table rotates 360° to acquire full 3D data. Multiple animals can be scanned simultaneously while maintaining an average dose per scan at about 13mGy, with a scanning and reconstruction time of less than a minute. Optical and microCT modalities can also operate independently.

Key features include:

  • Integrated optical and microCT technology
  • 3D optical tomography for fluorescence and bioluminescence
  • The industry’s most sensitive detection technology ideal for:
    • Bioluminescence
    • Multispectral fluorescence and spectral unmixing
    • Cerenkov imaging for optical radiotracer imaging
    • Low dose and ultra fast microCT
    • DyCE dynamic enhanced imaging for real time distribution studies of both fluorochromes or PET tracers ideal for PK/PD app

The IVIS SpectrumCT is an integrative platform that combines the full suite of IVIS optical features including Spectral Unmixing, 2D and 3D quantitative bioluminescence and fluorescence with fast and low dose CT imaging. The simple user interface along with automated co-registration, advanced visualization and analysis tools are driven by PerkinElmer’s market leading Living Image® software. The IVIS Spectrum CT enables longitudinal workflows to characterize disease progression and therapeutic effect throughout the complete experimental time frame with both quantitative CT and optical reconstructions. Fast imaging and the ability to image multiple animals offers the throughput required to scan large cohorts of animals quickly and draw sound conclusions from your experimental data.

Selected Publications

  • Jin et al (2020). A metastasis map of human cancer cell lines. Nature. 588, 331–336.
  • Nazerai et al (2020). Effector CD8 T Cell-Dependent Zika Virus Control in the CNS: A Matter of Time and Numbers. Front. Immunol.
  • Mason et al (2020). Imaging Early-Stage Metastases Using an 18F-Labeled VEGFR-1-Specific Single Chain VEGF Mutant. J Mol Img Biol.
  • Gendron et al (2020). Tumor targeting vitamin B12 derivatives for X-ray induced treatment of pancreatic adenocarcinoma. Photodiagnosis Photodynamic Ther. 30, 101637.
  • Srivastan et al (2020). Highlights on the imaging (nuclear/fluorescence) and phototherapeutic potential of a tri-functional chlorophyll-a analog with no significant toxicity in mice and rats. J Photochem Photobiol. 211, 111998.
  • Kim et al (2020). Peptide 18-4/chlorin e6-conjugated polyhedral oligomeric silsesquioxane nanoparticles for targeted photodynamic therapy of breast cancer. Colloids and Surfaces B: Biointerfaces. 189, 110829.
  • Witcomb et al (2017). Non-invasive three-dimensional imaging of Escherichia coli K1 infection using diffuse light imaging tomography combined with micro-computed tomography. Methods. 127:62-68.
  • Nielson et al (2017). Detection of local inflammation induced by repeated exposure to contact allergens by use of IVIS SpectrumCT analyses. Contact Dermititis. 74(4): 210-217.
  • Satpathy et al (2016). Targeted in vivo delivery of EGFR siRNA inhibits ovarian cancer growth and enhances drug sensitivity. Sci Reports. 6: 36518.
  • Witcomb et al (2015). Bioluminescent Imaging Reveals Novel Patterns of Colonization and Invasion in Systemic Escherichia coli K1 Experimental Infection in the Neonatal Rat. Inf & Immunity. 83(12): 4528-4540.

For additional publications, please visit Google Scholar.


Height 206.0 cm
Imaging Modality Optical Imaging, microCT Imaging
Optical Imaging Classification Bioluminescence imaging, Fluorescence Imaging
Portable No
Product Brand Name IVIS
Width 65.0 cm
Resources, Events & More
  • All

Application Note

Cerenkov Imaging of Radioisotopes in IVIS systems

Cerenkov Emission from radioisotopes in tissue,Optical imaging detects photons in the visible range of the electromagnetic,spectrum. PET and SPECT imaging instruments are sensitive to photons in the much,higher energy range of x-rays and gamma rays. While the PET and SPECT probes,which can generate Cerenkov light in tissue will continue to produce the relevant,gamma- and x-rays, visible photons will be produced from the Cerenkov emission,which the IVIS® will detect.,In beta decay emitters such as PET probes and isotopes such as 90Y, 177Lu, 131I and 32P,the beta particle will travel in the tissue until it either annihilates with an electron or,loses momentum due to viscous electromagnetic forces.,It is possible that the beta (electron or positron),is relativistic, traveling faster than the speed,of light in the tissue. While it is impossible,to travel than the speed of light in a vacuum,(c), the speed of light in tissue is v = c / n,where n is the tissue index of refraction and,n = 1. Cerenkov photons will be generated,by a relativistic charged particle in a dielectric medium such as tissue.

Imaging Hepatocellular Liver Injury using NIR-labeled Annexin V

Drug induced liver injury (DILI) is a major reason for late stage termination of drug discovery research projects, highlighting the importance of early integration of liver safety assessment in the drug development process. A technical approach for in vivo toxicology determination was developed using Acetaminophen (APAP), a commonly used over-the-counter analgesic and antipyretic drug, to induce acute hepatocellular liver injury.

Imaging Oncolytic Virus Infection in Cancer Cells

Aside from the traditional small-molecule chemotherapeutics or targeted therapy agents that have been widely used in the clinic for decades, a new type of cancer therapeutics based on oncolytic viruses has recently gained attention in the field of research. Oncolytic viruses are genetically modified viruses capable of delivering therapeutic gene payload to cancer cells.

There are many types of oncolytic viruses each having a different tumor-targeting mechanism. This application note highlights using Sindbis pseudovirus genetically modified with firefly luciferase reporter gene to non-invasively evaluate, monitor, and quantify oncolytic viral infection in living tumors and subsequent virus-host interactions in real-time using IVIS® optical imaging.

Multiplex 2D Imaging of NIR Molecular Imaging Agents on the IVIS SpectrumCT and FMT 4000

Epifluorescence (2D) imaging of superficially implanted mouse tumor xenograft models offers a fast and simple method for assessing tumor progression or response to therapy. This approach for tumor assessment requires the use of near infrared (NIR) imaging agents specific for different aspects of tumor biology, and this Application Note highlights the ease and utility of multiplex NIR fluorescence imaging to characterize the complex biology within tumors growing in a living mouse.



3D Multimodality Imaging: See disease in all its dimensions

It’s simple: More information means more understanding,For today’s researchers in oncology, infectious diseases, inflammation, neuroscience, stem cells,and other disciplines, there’s an increasing need for in vivo imaging that enables you to visualize,multiple events simultaneously and to extract the maximum amount of information from each,subject – leading to greater biological understanding.,Multimodal imaging enables a better understanding of disease biology. By utilizing in vivo,optimized bioluminescent and fluorescent agents and radioactive probes, researchers can,measure depth, volume, concentration, and metabolic activity, providing a wealth of information,for untangling the mysteries of disease.,Coregistration allows researchers to overlay images from multiple imaging modalities, providing,more comprehensive insight into the molecular and anatomical features of a model subject.,For example, optical imaging data can be used to identify and quantify tumor burden at,the molecular level and, when integrated with microCT, provides a quantitative 3D view of,anatomical and functional readouts.,At PerkinElmer, we’ve developed industry leading imaging technology for preclinical research.,Our technology integrates 3D optical and PET modalities with microCT to provide a better,understanding of disease. And that means better monitoring of disease progression, earlier,detection of treatment efficacy, and deeper understanding of metabolic changes that take place,throughout disease development.


Case Study

Tracking Neuroinflammation Using Transgenic Mouse Models and Optical Imaging

Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease for which there is no cure. Another lethal brain disease is stroke, which occurs when blood supply to the brain is disrupted by a blood vessel that bursts or becomes blocked. Neuroinflammation plays a key role in both of these diseases as well as in the pathogenesis for Alzheimer’s, multiple sclerosis, and other forms of brain injury.

Read this case study where Dr. Jasna Kriz and her colleagues at Laval University in Quebec, developed transgenic mouse models for optical imaging of cells such as astroglia, microglia, and neurons. Mice were modified to express firefly luciferase when immune processes are activated enabling the researchers to study early neuroinflammatory events using the high sensitivity 2D & 3D optical imaging on the IVIS® platform.

A Novel Mouse Model Using Optical Imaging to Detect On-Target, Off-Tumor CAR-T Cell Toxicity

CAR T therapy has achieved tremendous success in treating blood malignancies, however treating solid tumors with this therapy has proven to be challenging due to several factors such as on-tumor, off-tumor toxicity.

Read this case study where researchers from University of Pennsylvania created a mouse model that expresses tumor associated antigens in normal tissue to study off-tumor CAR-T cell toxicity. These studies used optical imaging on the IVIS® platform to longitudinally monitor off-tumor antigen expression, tumor progression, and CAR-T cell trafficking in live animals.

A Novel Non-Invasive In Vivo Diagnostic Tool for the Assessment of NASH

Non-alcoholic fatty liver disease (NAFLD) describes a progressive pathology that affects the liver. Fat accumulation causes fatty liver (NAFL) or steatosis to develop, which leads to lipotoxicity and in turn induces liver inflammation and apoptosis, resulting in non-alcoholic steatohepatitis (NASH). NASH can progress to fibrosis and then cirrhosis, which in some cases will lead to hepatocellular carcinoma (HCC).

Read this case study to learn how non-invasive preclinical in vivo imaging was used to longitudinally visualize, quantify, and diagnose NASH with the goal of investigating the efficacy of liver fibrosis-preventing drugs on NAFLD progression.

PDF 963 KB
Using IVIS optical imaging of CRISPR/Cas9 engineered adipose tissue to study obesity prevention

Obesity is a global epidemic that is the fifth leading cause of death worldwide and in the US alone, nearly 85% of adults are expected to be overweight or obese by 2030. In addition to the increased risk of overall mortality, obesity is associated with an increased risk for other metabolic disorders such as diabetes and heart disease which pose a significant burden to health care systems.

Read this case study to learn how researchers at the Joslin Diabetes Center in Boston, Massachusetts used the IVIS® optical imaging system to visualize and quantify CRISPR/Cas9 engineered adipose tissue in a mouse model to study the prevention of obesity and obesity-related metabolic disorders.



In Vivo Imaging Solutions eBook

Researchers trust our in vivo imaging solutions to give them reliable, calibrated data that reveals pathway characterization and therapeutic efficacies for a broad range of indications. Our reagents, instruments, and applications support have helped hundreds of research projects over the years. And our hard-earned expertise makes us a trusted provider of pre-clinical imaging solutions— with more than 9,000 peer reviewed articles as proof.


Featured Publication Note

In Vivo Imaging of Influenza Virus Infection in Immunized Mice

Influenza is a highly infectious airborne disease with an important societal burden. Annual epidemics have occurred throughout history causing tens of millions of deaths. Even a run-of-the-mill influenza infection can be debilitating to otherwise healthy people, and lethal to those who are elderly or frail, so vaccinations are important. Because of seasonal antigenic drift and antiviral resistance of the virus there is a critical need for the development of new and novel vaccines and antiviral drugs. In vivo optical imaging has emerged as a powerful, non-invasive tool to track viral load and therapeutic efficacy of vaccines and immunotherapies in small animal models.

Read how researchers at the NIH, NIAID, Emory University, and University of Wisconsin used the IVIS® optical imaging platform to successfully quantify and track viral load in mice and demonstrated that vaccine of human mAb administration has a protective or therapeutic effect in mice challenged with the influenza virus.

PDF 436 KB
Biopolymers Codelivering Engineered T Cells and STING Agonists can Eliminate Heterogenous Tumors

Adoptive cell transfer using chimeric antigen receptor (CAR-T) cell therapy in which the patient’s T-cells are extracted, genetically modified, and transferred back into the patient with the aim that these altered cells can recognize and attack cancer cells has revolutionized cancer immunotherapy. Although very successful in treating hematological malignancies, CAR T therapy is more challenging in treating solid tumors.

Learn how researchers at the Fred Hutchinson Cancer Research Center and University of Washington used the IVIS Spectrum non-invasive imaging system to evaluate the synergistic antitumor effect of co-delivery of CAR T cells and STING-agonists via biopolymer scaffolds in an orthotopic murine model of pancreatic cancer.

PDF 521 KB
Evaluating a Novel Nanoparticle Platform for Controlled Liraglutide Release in a Type II Diabetes Mouse Model Via Optical Imaging

A large percentage of Type 2 diabetes mortality is related to cardiovascular complications. Consequently, there is a critical need for creating novel therapeutics that not only manage blood glucose levels, but also reduce the risk of developing cardiovascular diseases.

Liraglutide (Lira) is a recently approved drug used to treat Type II diabetes with excellent hypoglycemic effects while also improving cardiovascular function in patients. However its short half-life requires daily injections increasing the risk of poor patient compliance and other complications.

Read this publication review to learn how researchers used a Type II diabetes mouse model and optical imaging with the IVIS® platform to evaluate a nanoparticle system that offers a sustained and controlled release of Lira that overcomes the challenges of the short half-life of the drug.

PDF 538 KB


Best Practices for Designing An Effective In Vivo Fluorescence Imaging Study

Fluorescence molecular imaging is the visualization of cellular and biological function in vivo to gain deeper insights into disease processes and treatment effects. Designing an effective study from the beginning can help save time and resources.

Learn about several important best practices, from proper probe selection to study design to imaging technique tips and tricks needed to generate meaningful biological information from your in vivo fluorescence imaging studies.

PDF 507 KB


A fluorescent agent cocktail for detecting both cholestasis and hepatocellular forms of acute drug-induced liver injury

Drug induced liver injury (DILI) is a major reason for late stage,termination of drug discovery research projects, so assessment is,being integrated earlier in the drug development process. Some,chemicals can produce different forms of hepatic injury in mice,including the two most common forms, cholestasis and,hepatocellular injury. Biochemical serum markers of liver damage,like alanine transferase (ALT) and alkaline phosphatase (ALP) are,limited in their ability to detect both of these common forms of liver,injury and focus on plasma as an indirect measure of what is,occurring in the liver.

Combined efficacy & toxicity imaging following acute 5-FU treatment of HT-29 tumor xenografts

Cancer chemotherapy can produce severe side effects such as suppression of immune function and damage to heart muscle, gastrointestinal tract, and liver. If serious enough, tissue injury can be a major reason for late stage termination of drug discovery research projects, so it is becoming more important to integrate safety/toxicology assessments earlier in the drug development process. There are a variety of traditional serum markers, tailored mechanistically to specific tissues, however there are no current non-invasive assessment tools that are capable of looking broadly at in situ biological changes in target and non-target tissue induced by chemical insult.

Highly Sensitive Lanthanide Based Luminescent Particles for In Vivo Imaging of ROS Species in Deep Tissues

Introduction: Reactive oxygen species (ROS) play a critical role in a wide variety of disease conditions like cancer, inflammation, neurodegenerative disorders and oxidative stress. Highly sensitive and specific optical probes (fluorescent, luminescent or chemiluminescent probes) are therefore required for detecting and studying the roles of different ROS in disease pathogenesis. However, very short life times of these species coupled with the presence of antioxidants in living systems make it extremely hard to detect these reactive species in vivo, especially in deep tissues. We employed the chemiluminescent properties of lanthanide acceptor beads to develop a highly sensitive probe for ROS detection by non-invasive optical imaging. In this approach when an acceptor bead comes in close proximity (200nm) to Singlet oxygen (1O2), energy is transferred from the singlet oxygen to thioxene derivatives within the acceptor bead, resulting in light production at 520-620 nm (EPRM®). The major advantages of this approach are: a. enabling detection of ROS by generating long-lived signal (half-life in seconds); b. Achieving high sensitivity due to lack of background signal and c. Generating long wavelength (620nm) signal thereby allowing deep tissue interrogations in living organisms.

PDF 701 KB
In vivo fluorescent imaging of tumor bombesin and transferrin receptor expression as early indicators of sorafenib efficacy in small animal models

Targeted cancer therapy aims to block key signaling pathways that are critical for tumor cell growth and survival. The blockage eventually results in cell death via apoptosis and eventual tumor growth suppression. This strategy has proven to be quite effective, and the FDA has approved several targeted therapeutics in the past decade. Encouraged by the success in clinical development, many academic and pharmaceutical researchers are in active pursuit of improved next generation targeted anti-cancer drugs. As a result, many new chemical and biological entities are emerging from initial screening of in vitro, in vitro and/or in silico selection processes. From the perspective of drug development, it poses a great challenge for the next stage of in vivo validation and demands a robust, accurate, and efficient method for assessment of these candidates in living animal models.

Iterative Reconstruction Approach to Minimize Metal Artifacts in a Rotating Turntable CT System

Visualization and quantification of Computed Tomography (CT) scans is ideally performed on artifact free images. Materials with a high linear attenuation coefficient, such as metal, cause significant artifacts in the reconstructed image. Unfortunately, the use of metal is unavoidable in some orthopaedic and dental models and with some animal tracking systems.,Many iterative reconstruction approaches used in the past remove metal from the sinogram before the final reconstruction. These sinograms are geometry dependent, but the algorithms have not been tested for the rotating turntable geometries used in some preclinical uCT systems. These preclinical uCT systems also have specific image processing needs to facilitate specific co-registration applications.

PDF 493 KB
Molecular imaging of tumor energy metabolism as an early indicator of anti-cancer drug efficacy in small animal models

Targeted cancer therapy aims to block key signaling pathways that are critical for tumor cell growth and survival. The blockage eventually results in cell death via apoptosis and tumor growth suppression. Encouraged by the success in clinical development, many academic and pharmaceutical researcher are in active pursuit of the improvement of next generation targeted anti-cancer drugs. As a result, many new chemical and biological entities are emerging from initial screening of in vitro, in vitro and/or in silico selection processes. From the perspective of drug development, it poses a great challenge on the next stage of in vivo validation and demands a robust, accurate, and efficient method for assessment of these candidates in living animal models.

PDF 1023 KB

Product Note

IVIS SpectrumCT Product Note

The IVIS® SpectrumCT expands upon the versatility,and advanced optical feature sets of the IVIS and,Maestro™ platforms integrated with low dose,microCT to support longitudinal imaging. The IVIS,SpectrumCT enables simultaneous molecular and,anatomical longitudinal studies, providing researchers,with essential insights into complex biological,systems in small animal models. The constant horizontal gantry motion and,the flat panel detector provide unparalleled performance for low-dose imaging,and automated optical and microCT integration. The stable revolving animal,platform table rotates 360° to acquire full 3D data. Multiple animals can be,scanned simultaneously while maintaining an average dose per scan at about,13mGy, with a scanning and reconstruction time of less than a minute. Optical,and microCT modalities can also operate independently.


Software Downloads

Technical Note

Adaptive Fluorescence Background Subtraction

Adaptive Fluorescence Background Subtraction Pre-clinical in vivo imaging technical note for IVIS Imaging Systems. Instrument background occurs when excitation light leaks through the emission filter. This occurs more frequently when the excitation and emission filters are narrowly separated. The ring you see is a result of non specific light reflecting off of the stage at an incident angle and passing through the filter causing what appears as leakage around the edges.


Auto-exposure technical note for IVIS pre-clinical imaging systems

Background ROI

Subtracting Background ROI from a Sequence

DLIT 1 Setup

DLIT setup and acquisition IVIS pre-clinical imaging systems. Bioluminescence Tomography or Diffuse Light Imaging Tomography (DLIT) utilizes the data obtained from a filtered 2D bioluminescent sequence in combination with a surface topography to represent the bioluminescent source in a 3D space. Utilizing DLIT, you can determine the depth of sources in your animal and calculate the absolute intensity of that source.

DLIT 3 Reconstruction

DLIT 3 Reconstruction technical note for IVIS Spectrum imaging systems

Determine Saturation

Determine Saturation for IVIS imaging systems - technical note

FLIT 1 Setup

FLIT - Fluorescence Tomography – Setup and Sequence Acquisition. Fluorescence Imaging Tomography (FLIT) utilizes the data obtained from a 2D transillumination fluorescence sequence in combination with a surface topography to reconstruct a fluorescent source in a 3D space. Utilizing FLIT, you can determine the depth of sources in your animal and calculate the absolute intensity of that source at depth.

FLIT 3 Reconstruction

Fluorescence Tomography – Source Reconstruction and Analysis - FLIT Reconstruction

High Resolution Images

Acquisition of High Resolution Images. This quick reference guide is for those researchers who wish to perform analysis that requires high resolution including in vitro studies when one may want to discern aspects about cell layers, ex vivo tissue imaging, or imaging of tissue slices. You will not need this resolution in most in vivo studies.

Image Overlay 2D

Not only is it possible to load multiple images as a group, for example multiple days of a longitudinal study, but it is also possible to load multiple images and Overlay them i.e. bioluminescent tumor with fluorescent targeted drug acquired in two separate images.

PDF 472 KB
Image Overlay 3D

It is possible to copy 3D sources (voxels) from one 3D reconstruction into another. For example, superimposing DLIT or FLIT signals is easy. However, the two combined sources must be based upon the same surface topography to produce meaningful information. Therefore it is imperative that the mouse remain completely still between acquisition of the DLIT and FLIT images.

PDF 731 KB
Kinetic Analysis of Bioluminescent Sources

Acquiring the most accurate quantitation of your bioluminescent sources requires a close understanding of the underlying kinetics involved in producing and capturing the detected light. After injection, the substrate for your bioluminescent probe will di

Loading Groups of Images

For many studies, it may be desirable to open a group of images together, for example, analyzing multiple days of longitudinal study side by side using the same scale.

PDF 751 KB
Spectral Unmixing

This guide will walk you through the steps of manually entering your sequences for the spectral unmixing procedure. The Living Image 4.3.1 software version includes an Autoexposure setting and an Imaging Wizard. For questions on how to use these two features please see the respective quick reference guide associated with these workflows. You can also find information pertaining to the use of these features in the Spectral Unmixing Wizard Setup reference guide. These features are designed to make setting up your sequences as easy as possible and we highly recommend that you take advantage of them when performing these steps.

Subject ROI

Subject ROI using IVIS imaging systems

Transillumination 1 Setup

Transillumination is a 2D fluorescence imaging technique that utilizes an excitation light source located below the stage. Transillumination is superior to epi-illumination at detection of red-shifted, deep tissue fluorescent sources due to the transilluminator’s concentrated delivery of excitation light into the subject via a 2 mm beam and lower autofluorescence levels attained due to the position of the animal in relation to the excitation light.

PDF 918 KB
Transillumination 2 Raster Scan

In order to facilitate faster transillumination imaging, with Living Image 4, we have incorporated raster scanning capabilities. With raster scanning, the shutter remains open as the transillumination excitation source moves underneath the animal. This results in a single image and faster imaging times.,Note: This Transillumination Fluorescence – Raster Scan Tech Note was designed as a supplement to Transillumination Fluorescence Tech Note 14a. For information about setup of your 2D transillumination fluorescence sequences, please first consult that tech note.

Transillumination 3 Normalized

Normalized transmission fluorescence is a technique that allows us to subtract background light leakage through thin tissue from transillumination images utilizing an extra image captured with a neutral density (ND) filter. The ND filter dampens the intensity of the halogen lamp to 1/100th of the source intensity but does not filter out specific wavelengths. Light of all wavelengths is allowed to pass through the animal and the image is collected with the emission filter of your choice.

PDF 802 KB
Working with Image Math

Working with Image Math. Image Math is a rudimentary but effective method for Spectrum and Lumina users to subtract background from images without performing Spectral Unmixing.

PDF 911 KB

Video Article


White Paper

Non-Invasive Optical Imaging for Viral Research and Novel Therapeutic and Vaccine Development

Viral diseases have emerged and re-emerged throughout history, and as the human population continues to increase globally, so will the frequency of viral pandemics. Not only have Ebola and COVID-19 demonstrated most recently mankind’s vulnerability to contagious diseases, but also the challenges we are faced with from a therapeutic standpoint.

Read how non-invasive optical imaging enables the most intricate host-pathogen interactions to be visualized and monitored in disease models that mimic what is seen in humans. Not only does optical imaging play an important role in better understanding the complex mechanisms of viral biology, it plays a vital role in the discovery and development of new drug and vaccine candidates.

The Role of In Vivo Imaging in Drug Discovery and Development

The primary goal of preclinical imaging is to improve the odds of clinical success and reduce drug discovery and development time and costs. Advances in non-invasive in vivo imaging techniques have raised the use of animal models in drug discovery and development to a new level by enabling quick and efficient drug screening and evaluation. Read this White Paper to learn how preclinical in vivo imaging helps to ensure that smart choices are made by providing Go/No-Go decisions and de-risking drug candidates early on, significantly reducing time to the clinic and lowering costs all while maximizing biological understanding.

PDF 547 KB