PerkinElmer
check quantity

IVIS® SpectrumCT In Vivo Imaging System

The IVIS® SpectrumCT preclinical in vivo imaging system expands upon the versatility of the IVIS Spectrum by offering 2D and 3D imaging capabilities but includes integrated low-dose microCT ideal for longitudinal studies. The system provides researchers with greater insights into complex biological systems by enabling simultaneous molecular and anatomical non-invasive imaging in animal models.

Part Number 128201
Buy Now

Please enter valid quantity

Please log in to add favorites.

NULL OR EMPTY CART

For research use only. Not for use in diagnostic procedures.

Overview

The constant horizontal gantry motion and the flat panel detector provide unparalleled performance for low-dose imaging and automated optical and microCT integration. The stable revolving animal platform table rotates 360° to acquire full 3D data. Multiple animals can be scanned simultaneously while maintaining an average dose per scan at about 13mGy, with a scanning and reconstruction time of less than a minute. Optical and microCT modalities can also operate independently.

Key features include:

  • Integrated optical and microCT technology
  • 3D optical tomography for fluorescence and bioluminescence
  • The industry’s most sensitive detection technology ideal for:
    • Bioluminescence
    • Multispectral fluorescence and spectral unmixing
    • Cerenkov imaging for optical radiotracer imaging
    • Low dose and ultra fast microCT
    • DyCE dynamic enhanced imaging for real time distribution studies of both fluorochromes or PET tracers ideal for PK/PD app

The IVIS SpectrumCT is an integrative platform that combines the full suite of IVIS optical features including Spectral Unmixing, 2D and 3D quantitative bioluminescence and fluorescence with fast and low dose CT imaging. The simple user interface along with automated co-registration, advanced visualization and analysis tools are driven by PerkinElmer’s market leading Living Image® software. The IVIS Spectrum CT enables longitudinal workflows to characterize disease progression and therapeutic effect throughout the complete experimental time frame with both quantitative CT and optical reconstructions. Fast imaging and the ability to image multiple animals offers the throughput required to scan large cohorts of animals quickly and draw sound conclusions from your experimental data.

Selected Publications

  • Jin et al (2020). A metastasis map of human cancer cell lines. Nature. 588, 331–336. https://doi.org/10.1038/s41586-020-2969-2
  • Nazerai et al (2020). Effector CD8 T Cell-Dependent Zika Virus Control in the CNS: A Matter of Time and Numbers. Front. Immunol. https://doi.org/10.3389/fimmu.2020.01977
  • Mason et al (2020). Imaging Early-Stage Metastases Using an 18F-Labeled VEGFR-1-Specific Single Chain VEGF Mutant. J Mol Img Biol. https://doi.org/10.1007/s11307-020-01555-z
  • Gendron et al (2020). Tumor targeting vitamin B12 derivatives for X-ray induced treatment of pancreatic adenocarcinoma. Photodiagnosis Photodynamic Ther. 30, 101637.https://doi.org/10.1016/j.pdpdt.2019.101637
  • Srivastan et al (2020). Highlights on the imaging (nuclear/fluorescence) and phototherapeutic potential of a tri-functional chlorophyll-a analog with no significant toxicity in mice and rats. J Photochem Photobiol. 211, 111998. https://doi.org/10.1016/j.jphotobiol.2020.111998
  • Kim et al (2020). Peptide 18-4/chlorin e6-conjugated polyhedral oligomeric silsesquioxane nanoparticles for targeted photodynamic therapy of breast cancer. Colloids and Surfaces B: Biointerfaces. 189, 110829. https://doi.org/10.1016/j.colsurfb.2020.110829
  • Witcomb et al (2017). Non-invasive three-dimensional imaging of Escherichia coli K1 infection using diffuse light imaging tomography combined with micro-computed tomography. Methods. 127:62-68. https://doi.org/10.1016/j.ymeth.2017.05.005
  • Nielson et al (2017). Detection of local inflammation induced by repeated exposure to contact allergens by use of IVIS SpectrumCT analyses. Contact Dermititis. 74(4): 210-217.https://doi.org/10.1111/cod.12746
  • Satpathy et al (2016). Targeted in vivo delivery of EGFR siRNA inhibits ovarian cancer growth and enhances drug sensitivity. Sci Reports. 6: 36518.https://doi.org/10.1038/srep36518
  • Witcomb et al (2015). Bioluminescent Imaging Reveals Novel Patterns of Colonization and Invasion in Systemic Escherichia coli K1 Experimental Infection in the Neonatal Rat. Inf & Immunity. 83(12): 4528-4540. https://doi.org/10.1128/IAI.00953-15

For additional publications, please visit Google Scholar.

Specifications

Height 206.0 cm
Imaging Modality Optical Imaging, microCT Imaging
Optical Imaging Classification Bioluminescence imaging, Fluorescence Imaging
Portable No
Product Brand Name IVIS
Width 65.0 cm
Resources, Events & More
  • All

Application Note

Cerenkov Imaging of Radioisotopes in IVIS systems

Cerenkov Emission from radioisotopes in tissue,Optical imaging detects photons in the visible range of the electromagnetic,spectrum. PET and SPECT imaging instruments are sensitive to photons in the much,higher energy range of x-rays and gamma rays. While the PET and SPECT probes,which can generate ...

PDF 2 MB
Imaging Hepatocellular Liver Injury using NIR-labeled Annexin V

Drug induced liver injury (DILI) is a major reason for late stage termination of drug discovery research projects, highlighting the importance of early integration of liver safety assessment in the drug development process. A technical approach for in vivo toxicology determination was developed usin ...

PDF 3 MB
Imaging Oncolytic Virus Infection in Cancer Cells

Aside from the traditional small-molecule chemotherapeutics or targeted therapy agents that have been widely used in the clinic for decades, a new type of cancer therapeutics based on oncolytic viruses has recently gained attention in the field of research. Oncolytic viruses are genetically modif ...

PDF 2 MB
Multiplex 2D Imaging of NIR Molecular Imaging Agents on the IVIS SpectrumCT and FMT 4000

Epifluorescence (2D) imaging of superficially implanted mouse tumor xenograft models offers a fast and simple method for assessing tumor progression or response to therapy. This approach for tumor assessment requires the use of near infrared (NIR) imaging agents specific for different aspects of tum ...

PDF 4 MB

Brochure

3D Multimodality Imaging: See disease in all its dimensions

It’s simple: More information means more understanding,For today’s researchers in oncology, infectious diseases, inflammation, neuroscience, stem cells,and other disciplines, there’s an increasing need for in vivo imaging that enables you to visualize,multiple events simultaneously and to extract th ...

PDF 2 MB

Case Study

Optical and MicroCT Imaging Enables Noninvasive Monitoring of EBV-Induced Neuroinvasion

Epstein-Barr virus (EBV) is one of the most common human viruses found throughout the world. The majority of infections lead to benign latent EBV infection in B-lymphocytes. However, in some patients it induces B-cell transformation causing lymphoid malignancies such as Burkitt and Hodgkin’s lymp ...

PDF 834 KB
Tracking Neuroinflammation Using Transgenic Mouse Models and Optical Imaging

Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease for which there is no cure. Another lethal brain disease is stroke, which occurs when blood supply to the brain is disrupted by a blood vessel that bursts or becomes blocked. Neuroinflammation plays a key role in both of th ...

PDF 1 MB
A Novel Mouse Model Using Optical Imaging to Detect On-Target, Off-Tumor CAR-T Cell Toxicity

CAR T therapy has achieved tremendous success in treating blood malignancies, however treating solid tumors with this therapy has proven to be challenging due to several factors such as on-tumor, off-tumor toxicity.

Read this case study where researchers from University of Pennsylvania crea ...

PDF 1 MB
A Novel Non-Invasive In Vivo Diagnostic Tool for the Assessment of NASH

Non-alcoholic fatty liver disease (NAFLD) describes a progressive pathology that affects the liver. Fat accumulation causes fatty liver (NAFL) or steatosis to develop, which leads to lipotoxicity and in turn induces liver inflammation and apoptosis, resulting in non-alcoholic steatohepatitis (NAS ...

PDF 963 KB
Using IVIS optical imaging of CRISPR/Cas9 engineered adipose tissue to study obesity prevention

Obesity is a global epidemic that is the fifth leading cause of death worldwide and in the US alone, nearly 85% of adults are expected to be overweight or obese by 2030. In addition to the increased risk of overall mortality, obesity is associated with an increased risk for other metabolic disord ...

PDF 1 MB

Ebook

In Vivo Imaging Solutions eBook

Researchers trust our in vivo imaging solutions to give them reliable, calibrated data that reveals pathway characterization and therapeutic efficacies for a broad range of indications. Our reagents, instruments, and applications support have helped hundreds of research projects over the years. And ...

PDF 4 MB

Flyer

Best Practices for Designing An Effective In Vivo Fluorescence Imaging Study

Fluorescence molecular imaging is the visualization of cellular and biological function in vivo to gain deeper insights into disease processes and treatment effects. Designing an effective study from the beginning can help save time and resources.

Learn about several important best p ...

PDF 507 KB

Guide

IVISense™ Fluorescent Probe Selector Guide for Oncology Research

The goal of in vivo fluorescence molecular imaging is to enable non-invasive visualization and quantification of cellular and biological functioning to better understand and characterize disease processes and treatment effects earlier within the context of a biological system.

This s ...

PDF 3 MB

Poster

A fluorescent agent cocktail for detecting both cholestasis and hepatocellular forms of acute drug-induced liver injury

Drug induced liver injury (DILI) is a major reason for late stage,termination of drug discovery research projects, so assessment is,being integrated earlier in the drug development process. Some,chemicals can produce different forms of hepatic injury in mice,including the two most common forms, chol ...

PDF 3 MB
Combined efficacy & toxicity imaging following acute 5-FU treatment of HT-29 tumor xenografts

Cancer chemotherapy can produce severe side effects such as suppression of immune function and damage to heart muscle, gastrointestinal tract, and liver. If serious enough, tissue injury can be a major reason for late stage termination of drug discovery research projects, so it is becoming more impo ...

PDF 1 MB
Highly Sensitive Lanthanide Based Luminescent Particles for In Vivo Imaging of ROS Species in Deep Tissues

Introduction: Reactive oxygen species (ROS) play a critical role in a wide variety of disease conditions like cancer, inflammation, neurodegenerative disorders and oxidative stress. Highly sensitive and specific optical probes (fluorescent, luminescent or chemiluminescent probes) are therefore requi ...

PDF 701 KB
In vivo fluorescent imaging of tumor bombesin and transferrin receptor expression as early indicators of sorafenib efficacy in small animal models

Targeted cancer therapy aims to block key signaling pathways that are critical for tumor cell growth and survival. The blockage eventually results in cell death via apoptosis and eventual tumor growth suppression. This strategy has proven to be quite effective, and the FDA has approved several targe ...

PDF 1 MB
Iterative Reconstruction Approach to Minimize Metal Artifacts in a Rotating Turntable CT System

Visualization and quantification of Computed Tomography (CT) scans is ideally performed on artifact free images. Materials with a high linear attenuation coefficient, such as metal, cause significant artifacts in the reconstructed image. Unfortunately, the use of metal is unavoidable in some orthopa ...

PDF 493 KB
Molecular imaging of tumor energy metabolism as an early indicator of anti-cancer drug efficacy in small animal models

Targeted cancer therapy aims to block key signaling pathways that are critical for tumor cell growth and survival. The blockage eventually results in cell death via apoptosis and tumor growth suppression. Encouraged by the success in clinical development, many academic and pharmaceutical researcher ...

PDF 1023 KB

Product Note

IVIS SpectrumCT Product Note

The IVIS® SpectrumCT expands upon the versatility,and advanced optical feature sets of the IVIS and,Maestro™ platforms integrated with low dose,microCT to support longitudinal imaging. The IVIS,SpectrumCT enables simultaneous molecular and,anatomical longitudinal studies, providing researchers,with ...

PDF 2 MB

Publication Review

In Vivo Imaging of Influenza Virus Infection in Immunized Mice

Influenza is a highly infectious airborne disease with an important societal burden. Annual epidemics have occurred throughout history causing tens of millions of deaths. Even a run-of-the-mill influenza infection can be debilitating to otherwise healthy people, and lethal to those who are elderl ...

PDF 436 KB
Biopolymers Codelivering Engineered T Cells and STING Agonists can Eliminate Heterogenous Tumors

Adoptive cell transfer using chimeric antigen receptor (CAR-T) cell therapy in which the patient’s T-cells are extracted, genetically modified, and transferred back into the patient with the aim that these altered cells can recognize and attack cancer cells has revolutionized cancer immunotherapy ...

PDF 521 KB
Evaluating a Novel Nanoparticle Platform for Controlled Liraglutide Release in a Type II Diabetes Mouse Model Via Optical Imaging

A large percentage of Type 2 diabetes mortality is related to cardiovascular complications. Consequently, there is a critical need for creating novel therapeutics that not only manage blood glucose levels, but also reduce the risk of developing cardiovascular diseases.

Liraglutide (Lira) is ...

PDF 538 KB

Software Downloads

Technical Note

PDF 607 KB
PDF 1 MB
FLIT 3 Reconstruction

Fluorescence Tomography – Source Reconstruction and Analysis - FLIT Reconstruction

PDF 2 MB
High Resolution Images

Acquisition of High Resolution Images. This quick reference guide is for those researchers who wish to perform analysis that requires high resolution including in vitro studies when one may want to discern aspects about cell layers, ex vivo tissue imaging, or imaging of tissue slices. You will not ...

PDF 1 MB
Image Overlay 2D

Not only is it possible to load multiple images as a group, for example multiple days of a longitudinal study, but it is also possible to load multiple images and Overlay them i.e. bioluminescent tumor with fluorescent targeted drug acquired in two separate images.

PDF 472 KB
Image Overlay 3D

It is possible to copy 3D sources (voxels) from one 3D reconstruction into another. For example, superimposing DLIT or FLIT signals is easy. However, the two combined sources must be based upon the same surface topography to produce meaningful information. Therefore it is imperative that the mouse r ...

PDF 731 KB
Kinetic Analysis of Bioluminescent Sources

Acquiring the most accurate quantitation of your bioluminescent sources requires a close understanding of the underlying kinetics involved in producing and capturing the detected light. After injection, the substrate for your bioluminescent probe will di

PDF 1 MB
Loading Groups of Images

For many studies, it may be desirable to open a group of images together, for example, analyzing multiple days of longitudinal study side by side using the same scale.

PDF 751 KB
Spectral Unmixing

This guide will walk you through the steps of manually entering your sequences for the spectral unmixing procedure. The Living Image 4.3.1 software version includes an Autoexposure setting and an Imaging Wizard. For questions on how to use these two features please see the respective quick reference ...

PDF 4 MB
Subject ROI

Subject ROI using IVIS imaging systems

PDF 2 MB
Transillumination 1 Setup

Transillumination is a 2D fluorescence imaging technique that utilizes an excitation light source located below the stage. Transillumination is superior to epi-illumination at detection of red-shifted, deep tissue fluorescent sources due to the transilluminator’s concentrated delivery of excitation ...

PDF 918 KB
Transillumination 2 Raster Scan

In order to facilitate faster transillumination imaging, with Living Image 4, we have incorporated raster scanning capabilities. With raster scanning, the shutter remains open as the transillumination excitation source moves underneath the animal. This results in a single image and faster imaging ti ...

PDF 2 MB
Transillumination 3 Normalized

Normalized transmission fluorescence is a technique that allows us to subtract background light leakage through thin tissue from transillumination images utilizing an extra image captured with a neutral density (ND) filter. The ND filter dampens the intensity of the halogen lamp to 1/100th of the so ...

PDF 802 KB
Working with Image Math

Working with Image Math. Image Math is a rudimentary but effective method for Spectrum and Lumina users to subtract background from images without performing Spectral Unmixing.

PDF 911 KB

Video Article

Webinars

White Paper

Bioluminescence Resonance Energy Transfer (BRET) to Monitor Protein-Protein Interactions

The ability to image protein-protein interactions (PPIs) in vivo has important implications for a wide variety of biological research endeavors, including drug discovery and molecular medicine. The visual representation, characterization, quantification, and timing of these biological proc ...

PDF 1 MB
Non-Invasive Optical Imaging for Viral Research and Novel Therapeutic and Vaccine Development

Viral diseases have emerged and re-emerged throughout history, and as the human population continues to increase globally, so will the frequency of viral pandemics. Not only have Ebola and COVID-19 demonstrated most recently mankind’s vulnerability to contagious diseases, but also the challenges ...

PDF 2 MB
The Role of In Vivo Imaging in Drug Discovery and Development

The primary goal of preclinical imaging is to improve the odds of clinical success and reduce drug discovery and development time and costs. Advances in non-invasive in vivo imaging techniques have raised the use of animal models in drug discovery and development to a new level by enabling quick ...

PDF 547 KB