PerkinElmer
check quantity

Avio 500 ICP-OES Cyclonic Concentric Configuration

PerkinElmer’s new Avio® 500 is a truly simultaneous, dual view, and compact ICP-OES. It utilizes a vertical plasma and is engineered to handle even the most difficult, high-matrix samples without dilution, delivering productivity, performance, and faster return on investment.

Part Number
Model Name
N0810010
Avio 500 Scott/Cross Flow
more
N0810011
Avio 500 Cyclonic/Concentric
more
N0810012
Avio 500 Oils
more
Buy Now

Please enter valid quantity

Please log in to add favorites.

NULL OR EMPTY CART

Overview

Avio 500's unique features include:

  • Vertical Plasma Torch Design: provides 100% matrix tolerance, minimizing sample preparation time.
  • Flat Plate Plasma Technology: delivers a more robust, stable plasma and the lowest argon consumption of any ICP (50% less than other systems).
  • Dual View: optimizes axial and radial plasma viewing to the extended linear dynamic range, measuring high and low concentrations in the same run, regardless of wavelength.
  • PlasmaShear System: offers maintenance-free, argon-free interference removal.
  • Universal Data Acquisition: enables simultaneous acquisition of all available wavelengths, with virtually no time or storage penalty.
  • Color PlasmaCam: for real-time viewing status evaluation of plasma, injector, and torch during analysis.
  • Syngistix for ICP Software: provides an intuitive, left-to-right, icon-based design; built-in, preset methods for faster, easier operation, requiring minimal training; extensive quality control options, including QC Charting; common software platform across AA, ICP, and ICP-MS.

And for added flexibility, the Avio 500 is available in three configurations, so that you can select the option best suited for your application(s). This configuration of the Avio 500 is equipped with Cyclonic/Concentric sample introduction to provide higher efficiency, better precision, and faster washout times. This configuration is not recommended for hydrofluoric acid applications.

 

Specifications

21 CFR Part 11 Compatible Yes
Depth 84.0 cm
Height 87.0 cm
Model Name Avio 500 Cyclonic/Concentric
Portable No
Product Brand Name Avio
Warranty 1 Year
Weight 163.0 kg
Width 76.0 cm
Resources, Events & More
  • All

Application Note

Analysis of Allergy Medications Using ICP-OES Following USP 232/233 Guidelines with Software Designed to Aid in 21 CFR Part 11 Compliance

This work demonstrates the ability of the Avio 500 ICP-OES to meet the USP <232>/<233> criteria for the analysis of orally-administered allergy tablets using Syngistix for ICP Enhanced Security software version 4.0, which provides the tools to help laboratories meet 21 CFR Part 11 compliance.

PDF 1 MB
Analysis of Impurities in Gold with the Avio 500 ICP-OES Following ASTM B562-95

Gold (Au) is one of the most precious and useful metals, due to a unique combination of characteristics: resistance to tarnish/corrosion, ability to conduct electricity, and ability to be easily formed into a variety of shapes. And because of this versatility, gold is widely used in jewelry, artwork, currency, electronics, medicine/dentistry, aerospace, and ornamental decorations.

The price of Au is highly dependent on the impurity levels present within – not all uses require the same purities. Towards this end, ASTM has developed specifications for various purities of refined gold in method B562-95: Standard Specification for Refined Gold.

This work demonstrates the ability of PerkinElmer’s Avio® 500 ICP-OES to measure impurities in gold at the levels defined in ASTM Method B562-95, and detection limits of 1-2 orders of magnitude lower than the specification limits suggest its ability to measure even lower impurity levels.

PDF 1 MB
Analysis of Impurities in Nickel with Avio 500 ICP-OES Following London Metal Exchange Guidelines

The London Metal Exchange (LME) issues specifications for a variety of purities for different metals. This work focuses on the analysis of contaminants in nickel with PerkinElmer’s Avio® 500 ICP Optical Emission Spectrometer (ICP-OES), using “Special Contract Rules for Primary Nickel” as a guideline for the analytes and required concentrations.

PDF 795 KB
Analysis of In-Service Oils Following ASTM D5185 with the Avio 500 ICP-OES

Globally, heavy machinery is used in construction, mining, and a variety of other areas. As the scale of the operations increase, the size, complexity, and cost of the equipment also increase, meaning that breakdowns can be costly, both in equipment repair and lost revenue. As a result, preventive maintenance is paramount. Lubricants are among the key fluids that can be tested, especially the oil used in engines. By monitoring the elemental concentration of the oil or other lubricants (hydraulics, transmission, gear), the status of that compartment can be determined.

PDF 1 MB
Analysis of Wastewaters Following U.S. EPA 200.7 Using the Avio 500 ICP-OES

This work focuses on the analysis of wastewaters following the guidelines provided in U.S. EPA Method 200.7. The U.S. Environmental Protection Agency (EPA) developed Method 200.7 for the determination of metals and trace elements in waters and wastes by ICP-OES, with the current version being Revision 4.4.1 While the scope of this method allows it to be applied to a variety of sample types, a common application is wastewater analysis.

PDF 1 MB
Determination of Nutrients in Animal Feed with the Avio 500 ICP-OES in Accordance with EN 15621

With the growing importance of domesticated animals as both a food source (i.e. livestock) as well as pets and service animals, their health is important. Therefore, it is imperative to monitor the nutrient content in animal feed. Nutrients exist in a variety of forms, including biological, organics, minerals, metals, and vitamins, which must be accurately measured to ensure that the feed meets the nutritional needs of the animals. Due to the importance of the analysis, a variety of standardized methods have been developed to ensure accurate nutrient analysis.

Most mineral and metallic nutrients are present at high concentrations and can be measured with atomic absorption (AA), inductively coupled plasma optical emission spectroscopy (ICP-OES), or ICP mass spectrometry (ICP-MS). ICP-OES is perhaps the preferred instrument for performing these analyses as it strikes the best balance between simplicity, ruggedness, matrix tolerance, accuracy, sample throughput, and cost.

This work discusses the analysis of animal feed by ICP-OES following EN 15621 guidelines, demonstrating the advantages of PerkinElmer’s Avio 500 ICP-OES for this application.

PDF 1 MB
Direct Analysis of Ethanol for Phosphorus, Sulfur, Copper, and Iron with the Avio 500 ICP-OES

Ethanol is an important blending component in fuels commonly used in gasoline/petrol. Because of its wide use, it is important to monitor the concentrations of impurities in the ethanol which can negatively impact the performance of the resulting fuel. As a result, standards have been created for the phosphorus (P), sulfur (S), and copper (Cu) content in fuel.

Ethanol analysis by ICP-OES can be challenging both due to volatility and high carbon content. However, with the right choice of sample introduction components and a robust plasma, ethanol can be measured with ease. This work demonstrates the ability of PerkinElmer’s Avio 500 ICP-OES to measure phosphorus, sulfur, copper, and iron in ethanol, leveraging the capabilities of Multicomponent Spectral Fitting (MSF) to eliminate the effect of interferences.

PDF 1 MB
High-Precision Analysis of Battery Materials with the Avio 500 ICP-OES

Battery usage is growing rapidly as new uses are found, leading to the development of new battery types, technologies, and materials. Some commonly-used elements in different types of batteries include lithium, manganese, nickel, phosphorus, and zinc, among others. The percentage of these components can range from single digit up to 30%, depending on the battery.

An important factor in obtaining optimum performance is accurately knowing the ratios of the major components, since deviations can negatively affect battery performance, as can the presence of impurities. Therefore, the major components must be measured both with high accuracy and precision, while, at the same time, measuring impurity levels.

ICP-OES is the ideal analytical technique to meet these needs – it has a high tolerance to matrices, yet is capable of high precision and can accurately measure impurities down to the µg/L level. This work demonstrates the ability of PerkinElmer's Avio® 500 ICP-OES to achieve RSDs < 0.1% for matrix elements in simulated battery materials, the result of the instrument's ability to perform true simultaneous measurements.

Download this application note to find out how the Avio 500 ICP-OES can measure elements with both high precision and accuracy while, at the same time, measuring common impurities.

PDF 1 MB
Impurities in Lead with the Avio 500 ICP-OES Following London Metal Exchange Guidelines

The London Metal Exchange issues specifications for a number of different metals in several grades. This work focuses on the analysis of lead of different purities with PerkinElmer’s Avio® 500 ICP Optical Emission Spectrometer (ICP-OES), using “Special Contract Rules for Standard Lead1” as a guideline for the analytes and concentrations.

PDF 1 MB
Stable Analysis of Lithium Metaborate Fusion Samples with the Avio 500 ICP-OES

The analysis of geological materials poses a challenge due to their matrix composition and the sample preparation process required to convert the samples into solution. A commonly used sample preparation technique for geological samples is lithium fusion, which involves mixing the sample with excess lithium borate and heating until the lithium borate melts and dissolves the sample to form a homogenous mass. The resulting solid is dissolved in acid for analysis.

Fusion samples are some of the most punishing samples for an ICP-OES sample introduction system, as they contain high concentrations of Group I elements (such as lithium, sodium, and potassium), which can result in deposits on the nebulizer and injector, resulting in signal drift. In addition, the high concentrations of Group I elements may cause rapid devitrification of the quartz torch, so obtaining accurate results with good precision over longer time intervals is challenging. However, with the proper choice of sample introduction components, these challenges can be overcome.

This work describes the analysis of fusion samples leveraging the PerkinElmer Avio® 500 ICP-OES, with a focus on long-term stability.

PDF 1 MB
Using MSF to Resolve Difficult Interferences in Metallurgical Samples with the Avio 500 ICP-OES

The analysis of trace metals in metallurgical matrices also presents a challenge for ICP-OES: spectral interferences. Many elements have a large number of emission lines (i.e. approximately 20,000 for iron), which increases the potential for spectral interferences. This effect is compounded in metallurgical samples, where the matrix element(s) are present at high levels due to the minimal dilutions used.

PDF 1 MB

Brochure

A Guide to General USP Chapters

Quality and consistency of medicines is critical to ensuring their identity, strength, and purity is at a safe level for human consumption.

That's why we rely on strict guidelines – to guarantee medications that make it to the shelves are exactly what they claim to be. This guide helps provide a simple breakdown of USP Chapters and what they contain, so that you can be confident your products are in compliance.

PDF 1 MB
Avio 500 ICP Optical Emission Spectrometer

With a truly simultaneous system, high sensitivity and superior resolution, the Avio® 500 ICP-OES helps your lab accomplish more — even with the most difficult samples — while making the most of your resources.

The Avio 500 provides:

  1. Unsurpassed matrix tolerance with vertical torch design
  2. Lowest argon consumption of any ICP — at least 50% lower than other systems
  3. Simultaneous background correction for faster sample-to-sample time and improved data accuracy
  4. High throughput enabled by dual view technology, simultaneous data acquisition and low routine maintenance
  5. Maximized instrument run time with Radian Remote Monitoring

With the Avio 500 ICP-OES, you can do more — faster and more easily. Now is the time to expand your range and extend your resources. Now is the time for the Avio 500 ICP-OES.

Download the brochure to learn more.

PDF 1 MB
Grain Testing Solutions Brochure

The grain industry is very complex. It’s global, diverse, and can also present analytical challenges. Today’s grain users demand more when it comes to quality, safety, and uniformity. In addition, they seek diverse products with unique characteristics.

PerkinElmer is equipped to help the grain industry in its quest to feed the world – nutritiously and economically. Our testing and analysis solutions encompass the three primary areas required for complete knowledge of grains and their derivatives – composition, functionality, and safety.

PDF 6 MB
Meat and Seafood Testing Solutions

Food testing labs like yours are constantly challenged with accurately analyzing samples quickly and efficiently - all while striving to reduce costs due to market forces. Your commitment to ensuring meat and seafood are safe for consumption, as demand increases, is an uphill battle.

Our commitment to you: to provide a range of solutions across multiple technologies, products, and services that meets or exceeds the testing needs of food processors. Our solutions offer more efficiency and increased accuracy and sensitivity for better yields in real time with minimal training.

From instrumentation and software to consumables and reagents to service and support, we are dedicated to providing you with end-to-end solutions that ease your everyday challenges of automation, throughput, service, and time to results.

PDF 6 MB
USP <232>/<233> & ICH Q3D Capabilities Brochure

The International Conference on Harmonization Guideline for Elemental Impurities Q3D (ICH Q3D) has established maximum permitted daily exposure limits for elemental impurities in pharmaceutical products. In combination with the U.S. Pharmacopeia’s (USP) Chapters <232> and <233> on elemental impurities, they redefined how the pharmaceutical and related supply-chain industries will measure, document, and comply with strict new standards to limit the presence of elemental impurities in drug products.

PerkinElmer provides the tools and processes you need to take control of impurities testing for both drug substances and drug products, providing proven, reliable technology for the identification and quantification of elemental impurities and the accurate measurement of residual solvents in accordance with strict regulatory guidelines.

Download this brochure to learn more.

PDF 3 MB

Catalog

Atomic Spectroscopy 2018-2019 Consumables & Supplies Catalog

With instruments that are the industry standard worldwide, PerkinElmer accessories, consumables, methods and application support meet the most demanding requirements and are the preferred choice in thousands of laboratories globally.

PDF 8 MB

Ebook

Palm Oil Analysis. Complete lab solutions from upstream to downstream

Quality control-monitoring and testing are important in ensuring the quality of palm oil. The quality control parameters are used to judge the quality of palm oil products and it can be monitored and tested to ensure that the palm oil is not deliberately or accidentally adulterated.

PDF 11 MB

Flyer

S20 Series Autosamplers

The S20 series is the next generation of high-performance, robust, and agile autosamplers designed specifically for PerkinElmer’s spectroscopy platforms - atomic and molecular. The series is comprised of two autosamplers: the S23 with three racks and the S25 with five racks. They are designed to meet the needs of all types of laboratories requiring:

  • Capacity - up to 270 samples for the S23 and up to 450 samples for the S25 allowing long, unattended runs
  • Speed - intelligent acceleration and deceleration speed in three axes
  • Ease of use - full control through various software platforms: Syngistix (for AA, ICP-OES and ICP-MS), UVWinLab and SpectrumFL
  • PDF 1 MB

    Guide

    Atomic Spectroscopy, A Guide to Selecting the Appropriate Technique and System

    This guide provides a basic overview of the most commonly used atomic spectroscopy techniques and provides the information necessary to help you select the one that best suits your specific needs and applications.

    PDF 1 MB
    Avio 200/500 ICP-OES Consumables and Supplies Guide

    All of the consumables and supplies for the PerkinElmer Avio 200 and 500 ICP-OES instruments.

    PDF 3 MB
    Avio 500 ICP-OES Preparing Your Lab

    The PerkinElmer Avio 500 ICP-OES instrument is a complete system

    PDF 2 MB

    Product Note

    High Throughput System for ICP-MS and ICP-OES Product Note

    Our High Throughput System (HTS) is a uniquely designed modular sample introduction that integrates with the NexION® series of ICP-MS and the Avio® series of ICP-OES to dramatically reduce sample-to-sample time, thereby improving sample throughput while maintaining operation simplicity. The HTS maximizes productivity by significantly reducing the time required for the sample uptake, stabilization, and washout.

    This valve-driven system is fully integrated with the Syngistix platform, eliminating the need for third-party software. Using a metal-free fluid path, the system quickly delivers the sample to the plasma, providing excellent results. With simple programming and workflow, the NexION ICP-MS and Avio ICP-OES with HTS simplifies method development for high-throughput analyses, allowing you to dramatically increase the number of samples you can analyze per day.

    PDF 1 MB
    Syngistix Cross-Platform Atomic Spectroscopy Software

    PerkinElmer's Syngistix is a workflow-based software designed to offer a harmonized user experience

    PDF 1 MB

    Regulatory Compliance Certification

    Technical Note

    Advantages of PerkinElmer's PlasmaShear Technology for ICP-OES

    ICP-OES is a rugged, robust technique capable of analyzing complex matrices containing percent levels of dissolved solids without the need for dilution. Nevertheless, to ensure accurate, robust analyses several challenges must be overcome. Two important obstacles are self-absorption by the plasma and dealing with the dissolved solids which are not vaporized in the plasma. PerkinElmer’s proprietary PlasmaShear technology is a fully integrated and automated interference-removal system that delivers problem-free axial analysis while protecting the optics from corrosion and deposition.

    Learn more about the benefits of PlasmaShear technology, only available on the Avio® series ICP-OES – download the technical note.

    PDF 608 KB
    Avio Series ICP-OES Solid-State RF Generator Technical Note

    PerkinElmer continues its tradition of excellence and leadership in ICP technology with our fourth-generation, free-running solid-state RF generator on the Avio® ICP-OES with maintenance-free Flat Plate plasma technology, using approximately half the argon of traditional helical coil systems.

    PDF 627 KB
    Continuous Real-Time Simultaneous Internal Standardization: Achieving the Highest Possible Precision

    When performing measurements with ICP-OES, precisions (i.e. relative standard deviations, RSDs) of 1-2% are typical. However, applications exist where greater precision is required, such as in the analysis of precious metals, major components in battery materials, and verification of the matrix composition of samples. A simple way of achieving high precision measurements is through a technique called Continuous Real-Time Simultaneous Internal Standardization (CRTSIS) only available on a truly simultaneous ICP-OES, such as PerkinElmer’s Avio® 500.

    Download this technical note to fully understand the true capabilities of the Avio 500’s CRTSIS for your high-precision applications.

    PDF 362 KB
    PerkinElmer's ICP-OES Flat Plate Plasma System

    A robust and stable plasma is essential when performing analytical analyses by inductively coupled plasma optical emission spectroscopy (ICP-OES). The plasma is traditionally generated by passing argon through a series of concentric quartz tubes (the ICP torch) within a helical, radio frequency (RF) induction coil. Once established, this highly-ionized argon plasma canreach temperatures as high as 10,000 K, allowing for complete atomization of the compounds within a sample and minimizing the potential for chemical interferences.

    PerkinElmer's patented Flat Plate™ plasma technology for the Avio® series ICP-OES provides several advantages over traditional helical coil systems - while capable of accommodating the same sample introduction systems and achieving comparable analytical precision, Flat Plate technology achieves greater plasma robustness and stability because of its unique design, leading to less sample loss, greater analytical signal, lower argon consumption, and less maintenance.

    Read more about the benefits of Flat Plate plasma technology - download the technical note.

    PDF 404 KB
    PerkinElmer's ICP-OES Multicomponent Spectral Fitting

    Baseline and interfering element correction (IEC) are used with ICP optical emission spectrometry

    PDF 287 KB
    Vertical Dual View Technology on the Avio ICP-OES Series

    The Avio® ICP-OES series incorporates a vertically oriented plasma with complete dual-viewing optics under computer and software control. Its Dual View technology optimizes axial and radial plasma viewing to the extended linear dynamic range, measuring high and low concentrations in the same run, regardless of wavelength. Any wavelength can be used in the radial, axial, or mixed viewing modes in a single method without sacrificing quality, truly offering the best of both worlds.

    Read more about the benefits of Dual View technology on the Avio ICP-OES series spectrometers – download the technical note.

    PDF 791 KB

    White Paper

    The Determination of Metals in Non-Medical Face Masks

    With the onset of the COVID-19 pandemic, the use of face masks by the general public has become a critical personal protective measure to minimize person-to-person transmission. While health care workers use medical or surgical masks, the general population uses non-medical, otherwise known as hygienic, face masks to greatly reduce the transmission of SARS-CoV-2 by capturing droplets and aerosols from those infected with the virus.

    In response to the increased demand for both the number and variety of non-medical face masks, many companies are now producing them to meet the public’s need, and with this great variety, the quality and the safety of the face masks must be assessed. This work describes the considerations surrounding metal analysis in hygienic face masks used to prevent the spread of COVID-19.

    PDF 683 KB