For research use only; not for diagnostic procedures. All products to be used in accordance with applicable laws and regulations including without limitation, consumption & disposal requirements under European REACH regulations (EC 1907/2006).
Formats:
Features:
Programmed death ligand 1 (PD-L1), also known as cluster of differentiation 274 (CD274) or B7 homolog1 (B7-H1) belongs to the growing B7 family of immune proteins and has been demonstrated to play a role in the regulation of immune responses and peripheral tolerance. Human PD-L1 is constitutively expressed in several organs such as heart, skeletal muscle, placenta and lung, and in lower amounts in thymus, spleen, kidney and liver. PD-L1, together with PD-L2, are two ligands for PD-1 (programmed death 1), a member of the CD28 family of immunoreceptors. By binding to PD-1 on activated T-cells and B-cells, PD-L1 may inhibit ongoing T-cell responses by inducing apoptosis and arresting cell-cycle progression. Accordingly, it leads to growth of immunogenic tumor growth by increasing apoptosis of antigen specific T cells and may contribute to immune evasion by cancers. PD-L1 thus is regarded as promising therapeutic target for human autoimmune disease and malignant cancers.
AlphaLISA technology allows the detection of molecules of interest in a no-wash, highly sensitive, quantitative assay. In an AlphaLISA assay, a biotinylated anti-analyte antibody binds to the Streptavidin-coated Donor beads while another anti-analyte antibody is conjugated to AlphaLISA Acceptor beads. In the presence of the analyte, the beads come into close proximity. The excitation of the Donor beads causes the release of singlet oxygen molecules that triggers a cascade of energy transfer in the Acceptor beads, resulting in a sharp peak of light emission at 615 nm.
Assay Target | PD-L1 |
---|---|
Assay Target Class | Protein |
Automation Compatible | Yes |
Detection Method | Alpha |
Experimental Type | In vitro |
Product Brand Name | AlphaLISA |
Shipping Condition | Blue Ice |
Therapeutic Area | Cancer |
Unit Size | 100 assay points |
Too many candidates, too little time. The lack of robust, rapid, high-throughput assays to identify and qualify potential therapeutic targets in areas such as cancer research continues to cost valuable time. What if you could increase assay throughput without compromising sensitivity, obtain more data points from each sample and eliminate tedious wash steps? Find out how AlphaLISA® assay technology, combined with the EnVision® multimode plate reader, provides a fast, powerful, homogeneous platform for screening potential inhibitors of PD-L1 (a protein associated with breast cancer tumor cells) expression in human cells.
One approach to immunotherapy is the modulation of immune checkpoints that are critical in regulating the degree and duration of immune system responses and preventing autoimmunity.
In this application note, you will learn:
Breast cancer tumors can adapt to immune cell infiltration by responding to the increased concentration of interferon gamma (IFN-ɣ) and other cytokines secreted by subsets of T lymphocytes with the upregulation of the immune checkpoint proteins such as Programmed cell death ligand 1 (PD-L1). These checkpoint proteins allow the tumors to evade immune targeting and reduce the immune response, thus promoting tumor progression.
In this application note, you will learn:
Various cytokines are secreted during an active immune response that can have modulatory effects on target cell populations, including interferon gamma (IFN-ɣ), tumor necrosis factor alpha (TNFa) and several interleukins.
In this application note, you will learn how we investigated: