In recent years there has been an increase in interest regarding 'AQ' columns due to their ability to retain polar analytes reproducibly under high aqueous conditions and with no phase collapse as a traditional C18 column would exhibit. There are two general approaches to the bonded phase chemistry of AQ columns. The first is to employ a polar or hydrophilic end-capping. The second method is to incorporate polar-embedded groups within the alkyl chains. These two methods provide a high degree of polar character to the final alkyl bonded phase, allowing full interaction with the alkyl chains upon wetting the silica surface with water. Additionally, the added polar functionality introduces a secondary separation mechanism (dipole-dipole interactions) to facilitate alternative selectivity for polar compounds. This application brief describes the use of Quasar™ C18, AQ and AQ Plus columns for the analysis of polar compounds, outlining the benefits of stationary phases offering alternative selectivity.