Material Provided

Format:  
AL299C: 500 assay points  
AL299F: 5 000 assay points  
The number of assay points is based on an assay volume of 50 µL in 96- or 384-well assay plates using the kit components at the recommended concentrations.

Product Information

Kit content:  
The kit contains 5 components: AlphaLISA Acceptor beads coated with an Anti-Analyte Antibody, Streptavidin-coated Donor beads, Biotinylated Anti-Analyte Antibody, lyophilized analyte and 10X AlphaLISA Immunoassay Buffer.  
Assay microplates (96-, 384- or 1536-well plates) must be purchased separately (see page 3 for more details).

Storage:  
Store kit in the dark at +4˚C. Store reconstituted analyte at -20°C.

Stability:  
This product is stable for at least 12 months from the manufacturing date when stored in its original packaging and the recommended storage conditions. Note: Once reconstituted, the human C-Peptide analyte is stable for at least 75 days at -20°C (see page 2: Reagents and Materials).

Application:  
This kit is designed for the quantitative determination of human C-Peptide in serum, buffered solution or cell culture medium using a homogeneous AlphaLISA assay (no wash steps). The kit has minimal cross-reactivity with proinsulin (see page 9: Specificity).

Sensitivity:  
Lower Detection Limit (LDL): 23.5 pg/mL  
Lower Limit of Quantification (LLOQ): 49.5 pg/mL  
(see page 8: Assay Performance Characteristics).

Dynamic range:  
23.5 – 30 000 pg/mL (see page 8: Assay Performance Characteristics).

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.

Quality Control

Lot to lot consistency is confirmed in an AlphaLISA assay. Maximum and minimum signals, EC₅₀ and LDL were measured on an EnVision® HTS instrument using the High sensitivity protocol described in this technical data sheet. We certify that these results meet our quality release criteria. Maximum counts may vary between bead lots and depending on assay conditions with no impact on LDL measurement.
### Precautions

- Only the AlphaScreen® Donor beads are light-sensitive. All the other assay reagents can be used under normal light conditions. All Alpha assays using the Donor beads should be performed under subdued laboratory lighting (< 100 lux). Green filters (LEE 090 filters (preferred) or Roscolux filters #389 from Rosco) can be applied to light fixtures.
- All blood components and biological materials should be handled as potentially hazardous. Some analytes are from human source.
- Some analytes are present in saliva. Take precautionary measures to avoid contamination of the reagent solutions.
- The Biotinylated Anti-Analyte Antibody contains sodium azide. Contact with skin or inhalation should be avoided.

### Reagents and Materials

The reagents provided in the AlphaLISA kit are listed in the table below:

<table>
<thead>
<tr>
<th>Kit components</th>
<th>AL299C (500 assay points)</th>
<th>AL299F (5 000 assay points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlphaLISA Anti-C-Peptide Acceptor beads stored in PBS, 0.05% Proclin-300, pH 7.2</td>
<td>50 µL @ 5 mg/mL (1 brown tube, white cap)</td>
<td>500 µL @ 5 mg/mL (1 brown tube, white cap)</td>
</tr>
<tr>
<td>Streptavidin (SA)-coated Donor beads stored in 25 mM HEPES, 100 mM NaCl, 0.05% Proclin-300, pH 7.4</td>
<td>200 µL @ 5 mg/mL (1 brown tube, black cap)</td>
<td>2 X 1 mL @ 5 mg/mL (2 brown tubes, black caps)</td>
</tr>
<tr>
<td>Biotinylated Antibody Anti-C-Peptide stored in PBS, 0.1% Tween-20, 0.05% NaN₃, pH 7.4</td>
<td>50 µL @ 500 nM (1 tube, black cap)</td>
<td>500 µL @ 500 nM (1 tube, black cap)</td>
</tr>
<tr>
<td>AlphaLISA human C-Peptide (0.1 µg), lyophilized analyte *</td>
<td>1 tube, clear cap</td>
<td>1 tube, clear cap</td>
</tr>
<tr>
<td>AlphaLISA Immunoassay Buffer (10X) **</td>
<td>10 mL, 1 small bottle</td>
<td>100 mL, 1 large bottle</td>
</tr>
</tbody>
</table>

* Reconstitute human C-Peptide in 100 µL Milli-Q® grade H₂O. The reconstituted analyte should be used within 60 minutes, if possible, or aliquoted into screw-capped polypropylene vials and stored at -20°C for further experiments. Avoid multiple freeze-thaw cycles. It has been demonstrated that reconstituted human C-Peptide is stable for at least 75 days at -20°C. One vial contains an amount of human C-Peptide sufficient for performing 10 standard curves. Additional vials can be ordered separately (cat # AL299S).

** Contains 250 mM HEPES, pH 7.4, 1% Casein, 10 mg/mL Dextran-500, 5% Triton X-100 and 0.5% Proclin-300. Extra buffer can be ordered separately (cat # AL000C: 10 mL, cat # AL000F: 100 mL). Note: 10X buffer might be slightly yellow. However, this does not affect the assay results.

Once diluted, 1X AlphaLISA Immunoassay Buffer contains 25 mM HEPES, pH 7.4, 0.1% Casein, 1 mg/mL Dextran-500, 0.5% Triton X-100 and 0.05% Proclin-300.

Sodium azide should **not** be added to the stock reagents. High concentrations of sodium azide (> 0.001 % final in the assay) might decrease the AlphaLISA signal. Note that sodium azide from the Biotinylated Antibody stock solution will not interfere with the AlphaLISA signal (0.0001% final in the assay).
Specific additional required reagents and materials:

The following materials are recommended:

<table>
<thead>
<tr>
<th>Item</th>
<th>Suggested source</th>
<th>Catalog #</th>
</tr>
</thead>
<tbody>
<tr>
<td>TopSeal™-A Adhesive Sealing Film</td>
<td>PerkinElmer Inc.</td>
<td>6005185</td>
</tr>
<tr>
<td>EnVision®-Alpha Reader</td>
<td>PerkinElmer Inc.</td>
<td>-</td>
</tr>
</tbody>
</table>

Protocols have been optimized for 50 µL assays in white OptiPlate™-384 microplates. Other assay volumes can be used with similar protocols and identical final AlphaLISA reagent concentrations:

<table>
<thead>
<tr>
<th>Format</th>
<th># of data points</th>
<th>Total assay volume</th>
<th>Sample volume</th>
<th>AlphaLISA beads / Biotin Antibody MIX volume</th>
<th>SA-Donor beads volume</th>
<th>Plate recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL299C</td>
<td>250</td>
<td>100 µL</td>
<td>10 µL</td>
<td>10 µL</td>
<td>80 µL</td>
<td>White OptiPlate-96 (cat # 6005290)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>White ½ AreaPlate-96 (cat # 6005560)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>White OptiPlate-384 (cat # 6007290)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Light gray AlphaPlate™-384 (cat # 6005350)</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>50 µL</td>
<td>5 µL</td>
<td>5 µL</td>
<td>40 µL</td>
<td>Light gray AlphaPlate-384 (cat # 6005350)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ProxiPlate™-384 Plus (cat # 6008280)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>White OptiPlate-384 (cat # 6007290)</td>
</tr>
<tr>
<td></td>
<td>1 250</td>
<td>20 µL</td>
<td>2 µL</td>
<td>2 µL</td>
<td>16 µL</td>
<td>Light gray AlphaPlate-1536 (cat # 6004350)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Light gray AlphaPlate-384 (cat # 6007290)</td>
</tr>
<tr>
<td></td>
<td>2 500</td>
<td>10 µL</td>
<td>1 µL</td>
<td>1 µL</td>
<td>8 µL</td>
<td>Light gray AlphaPlate-1536 (cat # 6004350)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Light gray AlphaPlate-384 (cat # 6007290)</td>
</tr>
<tr>
<td>AL299F</td>
<td>5 000</td>
<td>50 µL</td>
<td>5 µL</td>
<td>5 µL</td>
<td>40 µL</td>
<td>White ½ AreaPlate-96 (cat # 6005560)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>White OptiPlate-384 (cat # 6007290)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Light gray AlphaPlate-384 (cat # 6005350)</td>
</tr>
<tr>
<td></td>
<td>12 500</td>
<td>20 µL</td>
<td>2 µL</td>
<td>2 µL</td>
<td>16 µL</td>
<td>Light gray AlphaPlate-384 (cat # 6005350)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ProxiPlate™-384 Plus (cat # 6008280)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>White OptiPlate-384 (cat # 6007290)</td>
</tr>
<tr>
<td></td>
<td>25 000</td>
<td>10 µL</td>
<td>1 µL</td>
<td>1 µL</td>
<td>8 µL</td>
<td>Light gray AlphaPlate-1536 (cat # 6004350)</td>
</tr>
</tbody>
</table>
**Analyte of Interest**

Mature Connecting Peptide (C-Peptide) is a 31 amino acid peptide that is a product from the proteolytic processing of proinsulin. Through its G-protein coupled membrane receptor, C-Peptide activates Ca$^{2+}$-dependent intracellular signaling pathways, resulting in subsequent activation of both Na$^+$/K$^+$ ATPase and endothelial nitric oxide synthase. C-Peptide and insulin are co-secreted in equimolar amounts in the bloodstream by pancreatic beta cells of the islets of Langerhans. However, C-Peptide has a longer half-life than insulin in serum, making it a good indicator of endogenous insulin production. A lack of endogenous C-Peptide contributes to development of long-term microvascular complications in the nerves, the kidneys, and the retina in Type 1 diabetes patients. C-Peptide has been considered as a possible therapy to prevent long-term complications of diabetes.

**Description of the AlphaLISA Assay**

AlphaLISA technology allows the detection of molecules of interest in buffer, cell culture media, serum and plasma in a highly sensitive, quantitative, reproducible and user-friendly mode. In an AlphaLISA assay, a Biotinylated Anti-Analyte Antibody binds to the Streptavidin-coated Donor beads while another Anti-Analyte Antibody is conjugated to AlphaLISA Acceptor beads. In the presence of the analyte, the beads come into close proximity. The excitation of the Donor beads provokes the release of singlet oxygen molecules that triggers a cascade of energy transfer in the Acceptor beads, resulting in a sharp peak of light emission at 615 nm (see figure below).
Recommendations

General recommendations:

• The volume indicated on each tube is guaranteed for single pipetting. Multiple pipetting of the reagents may reduce the theoretical amount left in the tube. To minimize loss when pipetting beads, it is preferable not to prewet the tip.

• Centrifuge all tubes (including lyophilized analyte) before use to improve recovery of content (2 000 g, 10-15 sec). Resuspend all reagents by vortexing before use.

• Use Milli-Q® grade H2O (18 MΩ•cm) to dilute 10X AlphaLISA Immunoassay Buffer and to reconstitute the lyophilized analyte.

• When diluting the standard or samples, change tips between each standard or sample dilution. When loading reagents in the assay microplate, change tips between each standard or sample addition and after each set of reagents.

• When reagents are added in the microplate, make sure the liquids are at the bottom of the well.

• Small volumes may be prone to evaporation. It is recommended to cover microplates with TopSeal-A Adhesive Sealing Films to reduce evaporation during incubation. Microplates can be read with the TopSeal-A Film.

• The AlphaLISA signal is detected with an EnVision Multilabel Reader equipped with the ALPHA option using the AlphaScreen standard settings (e.g. Total Measurement Time: 550 ms, Laser 680 nm Excitation Time: 180 ms, Mirror: D640as, Emission Filter: M570w, Center Wavelength 570 nm, Bandwidth 100 nm, Transmittance 75%).

• AlphaLISA signal will vary with temperature and incubation time. For consistent results, identical incubation times and temperature should be used for each plate.

• The standard curves shown in this technical data sheet are provided for information only. A standard curve must be generated for each experiment. The standard curve should be performed in a similar matrix as the samples (e.g. FBS for serum samples).

Specific recommendations:

• AlphaLISA assays can be performed in cell culture medium with or without phenol red, with the following recommendations: if possible, avoid biotin-containing medium (e.g. RPMI medium) as lower counts and lower sensitivity are expected. Add at least 1% FBS or 0.1% BSA to cell culture medium.

• When analyzing serum samples, perform the standard curve in FBS. Serum should not exceed 10% of final assay volume (i.e. 5 µL serum sample in 50 µL final assay volume).

Protocol

High sensitivity protocol (2 incubation steps) – Dilution of standards in 1X AlphaLISA Immunoassay Buffer, cell culture medium or FBS

The protocol described below is an example for generating one standard curve in a 50 µL final assay volume (48 wells, triplicate determinations). The protocol also includes testing samples in 452 wells. If a different amount of samples are tested, the volumes of all reagents have to be adjusted accordingly. These calculations do not include excess reagent to account for losses during transfer of solutions or dead volumes.

The standard dilution protocol is provided for information only. As needed, the number of replicates or the range of concentrations covered can be modified.

Use of four background points in triplicate (12 wells) is recommended when LDL/LLOQ is calculated. One background point in triplicate (3 wells) can be used when LDL/LLOQ is not calculated.
Steps for Preparing Reagents

The protocol described below is for one standard curve (48 wells) and samples (452 wells). Dilution of standards can be done in 1X AlphaLISA Immunoassay Buffer, cell culture medium or FBS.

If a different amount of samples are tested, the volumes of all reagents have to be adjusted accordingly.

1) Preparation of 1X AlphaLISA Immunoassay Buffer:
Add 2.5 mL of 10X AlphaLISA Immunoassay Buffer to 22.5 mL H₂O.

2) Preparation of human C-Peptide analyte standard dilutions:
Reconstitute lyophilized human C-Peptide (0.1 µg) in 100 µL H₂O.
Prepare standard dilutions as follows (change tip between each standard dilution):

<table>
<thead>
<tr>
<th>Tube</th>
<th>Vol. of human C-Peptide (µL)</th>
<th>Vol. of diluent (µL) *</th>
<th>[human C-Peptide] in standard curve (g/mL in 5 µL)</th>
<th>(pg/mL in 5 µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10 µL of reconstituted human C-Peptide</td>
<td>90</td>
<td>1E-07</td>
<td>100 000</td>
</tr>
<tr>
<td>B</td>
<td>60 µL of tube A</td>
<td>140</td>
<td>3E-08</td>
<td>30 000</td>
</tr>
<tr>
<td>C</td>
<td>60 µL of tube B</td>
<td>120</td>
<td>1E-08</td>
<td>10 000</td>
</tr>
<tr>
<td>D</td>
<td>60 µL of tube C</td>
<td>140</td>
<td>3E-09</td>
<td>3 000</td>
</tr>
<tr>
<td>E</td>
<td>60 µL of tube D</td>
<td>120</td>
<td>1E-09</td>
<td>1 000</td>
</tr>
<tr>
<td>F</td>
<td>60 µL of tube E</td>
<td>140</td>
<td>3E-10</td>
<td>300</td>
</tr>
<tr>
<td>G</td>
<td>60 µL of tube F</td>
<td>120</td>
<td>1E-10</td>
<td>100</td>
</tr>
<tr>
<td>H</td>
<td>60 µL of tube G</td>
<td>140</td>
<td>3E-11</td>
<td>30</td>
</tr>
<tr>
<td>I</td>
<td>60 µL of tube H</td>
<td>120</td>
<td>1E-11</td>
<td>10</td>
</tr>
<tr>
<td>J</td>
<td>60 µL of tube I</td>
<td>140</td>
<td>3E-12</td>
<td>3</td>
</tr>
<tr>
<td>K</td>
<td>60 µL of tube J</td>
<td>120</td>
<td>1E-12</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>60 µL of tube K</td>
<td>140</td>
<td>3E-13</td>
<td>0.1</td>
</tr>
<tr>
<td>M ** (background)</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N ** (background)</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O ** (background)</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P ** (background)</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Dilute standards in diluent (e.g. 1X AlphaLISA Immunoassay Buffer, cell culture medium or FBS).
At low concentrations of analyte, a significant amount of analyte can bind to the vial. Therefore, load the analyte standard dilutions in the assay microplate within 60 minutes of preparation.

** Four background points in triplicate (12 wells) are used when LDL/LLOQ is calculated. If LDL/LLOQ does not need to be calculated, one background point in triplicate can be used (3 wells).

3) Preparation of 10X AlphaLISA Anti-C-Peptide Acceptor beads + Biotinylated Antibody Anti-C-Peptide MIX (100 µg/mL / 10 nM):
Add 50 µL of 5 mg/mL AlphaLISA Anti-C-Peptide Acceptor beads and 50 µL of 500 nM Biotinylated Antibody Anti-C-Peptide to 2 400 µL of 1X AlphaLISA Immunoassay Buffer. Prepare just before use.

4) Preparation of 1.25X Streptavidin (SA) Donor beads (50 µg/mL): Keep the beads under subdued laboratory lighting. Add 200 µL of 5 mg/mL SA-Donor beads to 19 800 µL of 1X AlphaLISA Immunoassay Buffer.

5) Samples: If applicable, dilute samples to be tested in diluent (e.g. 1X AlphaLISA Immunoassay Buffer, cell culture medium or FBS).
6) In a 96- or 384-well microplate:

**Typical results in 1X AlphaLISA Immunoassay Buffer**

**Log-Log scale:**

![Graph showing Log [human C-Peptide] (g/mL) vs. AlphaLISA Signal (counts) for 1X AlphaLISA Immunoassay Buffer. LDL = 23.5 pg/mL.

**Linear-Linear scale (linear range):**

![Graph showing [human C-Peptide] (pg/mL) vs. AlphaLISA Signal (counts) for 1X AlphaLISA Immunoassay Buffer. r² = 0.9941.

The data was generated using a white Optiplate-384 microplate and an EnVision-Alpha Reader 2102.

**Typical results in FBS**

**Log-Log scale:**

![Graph showing Log [human C-Peptide] (g/mL) vs. AlphaLISA Signal (counts) for FBS. LDL = 31.5 pg/mL.

**Linear-Linear scale (linear range):**

![Graph showing [human C-Peptide] (pg/mL) vs. AlphaLISA Signal (counts) for FBS. r² = 0.9964.

The data was generated using a white Optiplate-384 microplate and an EnVision-Alpha Reader 2102.
Interpreting the Data

- Calculate the average count value for the background wells.
- Generate a standard curve by plotting the AlphaLISA counts versus the concentration of analyte. A log scale can be used for either or both axes. No additional data transformation is required.
- Analyze data according to a nonlinear regression using the 4-parameter logistic equation (sigmoidal dose-response curve with variable slope) and a $1/Y^2$ data weighting (the values at maximal concentrations of analyte after the hook point should be removed for correct analysis).
- The LDL is calculated by interpolating the average background counts (12 wells without analyte) + 3 x standard deviation value (average background counts + (3xSD)) on the standard curve.
- The LLOQ is calculated by interpolating the average background counts (12 wells without analyte) + 10 x standard deviation value (average background counts + (10xSD)) on the standard curve.
- Read from the standard curve the concentration of analyte contained in the samples.
- If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.

Assay Performance Characteristics

Sensitivity:

The LDL and LLOQ were calculated as described above. The values correspond to the lowest concentration of analyte that can be detected/quantified in a volume of 5 µL using the recommended assay conditions.

- Average LDL is 23.5 pg/mL* (using 5 µL of analyte in AlphaLISA Immunoassay Buffer) (mean of 18 independent experiments).
- Average LLOQ is 49.5 pg/mL* (using 5 µL of analyte in AlphaLISA Immunoassay Buffer) (mean of 18 independent experiments).
- Average LDL is 31.4 pg/mL* (using 5 µL of analyte in FBS) (mean of 6 independent experiments).

* Note that LDL/LLOQ can be decreased (i.e. sensitivity increased) by increasing the volume of analyte in the assay (e.g. use 10 µL of analyte in a final assay volume of 50 µL).

Dynamic range: 23.5 – 30 000 pg/mL (in AlphaLISA Immunoassay Buffer)

Assay precision:

The following assay precision data were calculated from a total of 18 assays. Two operators performed three independent assays using three different kit lots. Each assay consisted of one standard curve and three control samples of high (A), medium (B) and low (C) concentration, assayed in triplicate. The assays were performed in 384-well format using AlphaLISA Immunoassay Buffer.

- Intra-assay precision:

The intra-assay precision was determined using a total of 18 independent determinations in triplicate for each control sample.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mean (pg/mL)</th>
<th>SD (pg/mL)</th>
<th>% CV (n = 18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3327</td>
<td>159</td>
<td>4.8</td>
</tr>
<tr>
<td>B</td>
<td>1148</td>
<td>50.3</td>
<td>4.4</td>
</tr>
<tr>
<td>C</td>
<td>340</td>
<td>13.2</td>
<td>3.9</td>
</tr>
</tbody>
</table>
• Inter-assay precision:

The inter-assay precision was determined using a total of 6 independent determinations with 9 measurements for each control sample.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mean (pg/mL)</th>
<th>SD (pg/mL)</th>
<th>% CV (n = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3 327</td>
<td>285</td>
<td>8.6</td>
</tr>
<tr>
<td>B</td>
<td>1 149</td>
<td>88.5</td>
<td>7.7</td>
</tr>
<tr>
<td>C</td>
<td>340</td>
<td>40.1</td>
<td>11.8</td>
</tr>
</tbody>
</table>

Human serum experiments:

In the following experiments, FBS was used as diluent in both the standard curve and dilution of samples.

• Dilutional linearity:

The dilutional linearity was determined by serial dilutions of a pool of human sera spiked with 3 ng/mL of human C-Peptide. The recovery was calculated using the 3 ng/mL sample as the 100% value. The average recovery from two independent measurements is reported.

<table>
<thead>
<tr>
<th>Dilution Factor</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>77</td>
</tr>
<tr>
<td>16</td>
<td>67</td>
</tr>
</tbody>
</table>

• Recovery:

Three known concentrations of analyte were spiked in a pool of human sera. All samples, including non-spiked serum, were measured in the assay. Values calculated for spiked samples reflect subtraction of the endogenous (no-spike) value. The % in serum versus expected (control spike value) was calculated for each concentration. The average recovery from two independent measurements is reported.

<table>
<thead>
<tr>
<th>Spike (ng/mL)</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>114</td>
</tr>
<tr>
<td>1</td>
<td>105</td>
</tr>
<tr>
<td>0.3</td>
<td>115</td>
</tr>
</tbody>
</table>

• Serum sample values:

Frozen human serum samples were analyzed using the above stated conditions.

<table>
<thead>
<tr>
<th>Number of samples</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of samples with analyte concentration ≥ LDL</td>
<td>20</td>
</tr>
<tr>
<td>Average analyte concentration</td>
<td>1 460 pg/mL</td>
</tr>
<tr>
<td>Range of analyte concentration</td>
<td>393 - 2 370 pg/mL</td>
</tr>
</tbody>
</table>
Specificity:

Cross-reactivity of the AlphaLISA C-Peptide Kit was tested using the following proteins at 10 ng/mL in AlphaLISA Immunoassay Buffer.

<table>
<thead>
<tr>
<th>Protein</th>
<th>% Cross-reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse C-peptide I</td>
<td>0</td>
</tr>
<tr>
<td>Mouse C-peptide II</td>
<td>0</td>
</tr>
<tr>
<td>Rat C-peptide I</td>
<td>0</td>
</tr>
<tr>
<td>Rat C-peptide II</td>
<td>0</td>
</tr>
<tr>
<td>Rat C-peptide dibasic</td>
<td>0</td>
</tr>
<tr>
<td>Pro-insulin</td>
<td>0.5</td>
</tr>
<tr>
<td>Insulin</td>
<td>0</td>
</tr>
</tbody>
</table>