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Introduction
The promise of high-content screening is the acceleration 
of discovery by extracting as much relevant information as 
possible from cells. Nevertheless, a large percentage of  
high-content screens analyze only a small number of  
image-based properties.1 As a result, valuable information from 
precious cells and disease models is not utilized. As nearly all 
screening approaches require a nuclear counterstain such as 
Hoechst to facilitate segmentation, phenotypic profiling of the 
nuclei can offer new and additional perspectives on assays 
at no extra cost. Hoechst “total sum intensity” distribution is 
sometimes used to analyze cell cycle distribution, in particular 
G0/G1, S and G2/M populations. However, besides cell cycle 
analysis, more information can be retrieved from the nuclear 
“counterstain”. Using Harmony® high-content imaging and 
analysis software, this study shows how a single nuclear stain 
enables phenotypic profiling and how phenotypic profiles can 
be used to distinguish cell types within co-cultures or even 
within seven different cell types without any further staining or 
additional phenotypic markers. 

Co-cultured cells can be distinguished based on 
Hoechst nucleus staining only

To maintain primary cells in vitro, they are often co-cultured 
with other cells which provide pro-survival signals in the form 
of trophic factors and cell-cell interactions. Typical examples 
are primary hepatocytes co-cultured with fibroblasts or primary 
neurons co-cultured with astrocytes. Besides this, co-cultures 
are also used to study the interaction between cell types, 
e.g. cancer cells with tumor-derived fibroblasts, or epithelial 
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cells with lymphocytes. In the typical direct co-culture 
setup, cell types are mixed within the same well, posing 
challenges to analyze them separately. To show how 
nuclear counterstaining, which is normally only used for 
cell segmentation, can also be used for cell classification, 
human hepatocytes (HepG2) and mouse fibroblasts (NIH/3T3) 
were co-cultured and analyzed.

Application

HepG2 liver and NIH/3T3 fibroblast cells were seeded into a 
PhenoPlate 384-well microplate (Revvity, # 6057300) either 
alone or as co-culture at different ratios (2:1, 1:1, 1:2). Prior 
to mixing, HepG2 cells were stained with CellTracker 
Green CMFDA (Thermofisher, # C2925) and NIH/3T3 cells 
with CellTracker Red CMTPX (Thermofisher, # C34552) 
to enable validation of the accuracy of the phenotypic 
classification. For each individual cell type, 96 wells, and 
for each co-culture condition, 64 wells, were used. The next 
day, the cells were fixed, stained with Hoechst 33342 
(Thermofisher, # H3570) and single plane images were 
acquired on an Opera Phenix® high-content screening system 
using a 20x water immersion objective in confocal mode. 
A total of 9 fields per well were acquired corresponding to 
approximately 1100 cells. Figure 1 shows example images of 
individual cultures and co-cultures.

Image analysis

To classify individual cells based on Hoechst nuclear staining 
as either HepG2 or NIH/3T3, images were analyzed using 
Harmony software. As a first step, nuclei were segmented 
using the Find Nuclei building block and basic morphology 
(i.e. area, roundness, width, length) and intensity (i.e. mean, 
max, sum) properties were calculated using the Calculate 
Morphology Properties and Calculate Intensity Properties 
building blocks. Border objects were removed using the 
Select Population building block which was followed by 
another Select Population building block to remove mitotic 

cells based on the previous calculated morphology and 
intensity properties. Mitotic cells were eliminated from 
further analysis based on the assumption that these nuclei 
should have less distinctive texture features than G0/G1, 
S and G2 nuclei. To calculate detailed phenotypic profiles, 
SER texture (Spots, Edges and Ridges) and advanced STAR 
morphology (Symmetry, Threshold compactness, Axial 
or Radial) parameters were calculated using Calculate 
Texture Properties and Calculate Morphology Properties 
building blocks. SER texture quantifies the occurrence of 
eight characteristic intensity patterns such as spots, edges 
and ridges within the image (see Figure 2 for visualizations). 
To capture texture structures with different sizes, three 
independent Calculate Texture Properties building blocks 
were used with different settings for the scale parameter 
(0, 1 and 2px). STAR morphology parameters are a set of 
properties that quantify the distribution of either texture 
features or fluorescence intensities inside a region of interest. 

Glossary of terms
Phenotype: The collection of observable traits 
of an organism, e.g. at the minimal level of a cell, 
properties such as size, shape or molecular content. 
Due to interaction and alteration with, or of the 
environment, these characteristics can change, 
e.g. cells passing through cell cycle.

Phenotypic marker: A marker that allows 
the identification of a specific phenotype, 
e.g. phospho-histone H3 is a marker for mitotic cells.

Phenotypic profiling: Extraction of a large number 
of quantitative features from microscopy images of 
cells to identify biologically relevant similarities or 
differences among samples based on these profiles.2

Figure 1. Representative images from wells containing either HepG2 or NIH/3T3 alone or co-cultures of HepG2 and NIH/3T3 cells mixed at 
ratios 2:1, 1:1 and 1:2 respectively. HepG2 cells are stained with Hoechst 33342 and CellTracker Green CMFDA. NIH/3T3 cells are stained 
with Hoechst 33342 and CellTracker Red CMTPX. Images were acquired on the Opera Phenix system in confocal mode using a 20x water 
immersion objective.
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They also include profiles in which the distribution of 
texture features or fluorescence intensity distributions are 
weighted depending on their localization inside the region of 
interest. In the case of the nuclear analysis used here, two 
profiles exist. Profile 1/2 starts at the nuclear membrane 
and weighting factors decrease towards the nuclear center. 
This parameter is very sensitive to phenotypic changes 
within this outer region of the nucleus. Profile 2/2 has the 
highest weight factor in the nuclear center and decreases 
towards the nuclear membrane. Therefore, this parameter 
sensitively captures changes within the inner region of 
the nucleus. STAR morphology properties also include a 
sliding parabola filter that can be used to remove smooth 
and continuous background from the image. Example images 
showing profiles, SER texture and sliding parabola filtered 
images of NIH/3T3 nuclei are shown in Figure 2. 

Using PhenoLOGIC machine-learning to select the best 
parameters for distinguishing cell types

A total of 230 parameters were calculated for every nucleus. 
The PhenoLOGIC machine-learning option in Harmony 
was then used to select the parameters best suited to 
discriminate between the two cell types. PhenoLOGIC 
requires the user to supervise training by simply clicking 
on about 100 representative objects per class to train 

Figure 2. SER texture and STAR morphology properties are key 
parameters for phenotypic profiling within Harmony software. 
Original input image, profile images (Profile 1/2 and Profile 2/2), 
sliding parabola filtered (SP Filter) image and SER texture filtered 
(Spot, Edge, Ridge, Bright, Hole, Saddle, Valley and Dark) images 
of the same NIH/3T3 nuclei.

the software to distinguish different phenotypes (Figure 3). 
After training, the software performs a linear discriminant 
analysis (LDA)3 to create a linear combination of the most 
relevant parameters that is then applied to untrained sample 
wells to classify cells either as HepG2 or NIH/3T3. 

Figure 3. Identifying cellular phenotypes using PhenoLOGIC machine learning. In “Training” mode, about 100 single cells within different wells 
were selected to teach the software to identify the different cell types in “mono cultures” (A and B). Once cells for each class were marked, 
the resulting classifier was applied to the whole data set. PhenoLOGIC combines the most meaningful parameters, to achieve accurate 
classification of the two cell types (panel C). In this case, seven properties were chosen to distinguish HepG2 from NIH/3T3 (properties shown 
in table below the scatter plot). Note how advanced SER (first 2) and STAR (position 3 to 7) properties dominate the selection.

CBA

Properties  
(ordered by relevance)

Linear 
coefficient

Nucleus Hoechst 33342 SER 
saddle 0 px 102,042

Nucleus Hoechst 33342 SER 
bright 2 px 208,404

Nuckus profile1/2 SER-Ridge -133,82

Nucleus threshold 
compacthness 30% SER-Ridge -14,4307

Nucleus axia length ratio 
SER-Spot 3,74013

Nucleus threshold 
compactness 50% -1,41603

Nucleus profile 1/2 -9,9629
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To check the accuracy of the classification, the CellTracker 
intensity in a perinuclear region was calculated. If a cell was 
classified as one cell type but the respective CellTracker 
intensity was below a defined threshold, the cell was 
counted as a “falsely classified“ cell. For this purpose, 
it was important to calculate CellTracker intensities after 
the PhenoLOGIC Select Population building block to avoid 
including this information in the classifier. 

In mono cultures, 97.5 – 97.8% of the cells are classified 
correctly. Incorrectly classified cells, i.e. NIH/3T3 in pure 
HepG2 cultures are identified as false positive based on 
the CellTracker staining (Figure 4C, first red and light red 
column on the left). In addition a negligible number of HepG2 
cells (0.01%, Figure 4B, first light green column on the left) 
is identified as false positive in pure HepG2 cultures.  
These represent cells that did not take up sufficient 
CellTracker during staining. The same is true for HepG2 
cells identified in pure NIH/3T3 cells. All falsely classified 
cells are identified by CellTracker staining (Figure 4B, last 
green and light green columns on the right) and a very low 
and negligible number of NIH/3T3 cells (0.01%, Figure 4C, 
last light red column on the right) are identified as false 
positives based on the insufficient CellTracker staining. 
The percentage of falsely classified cells decreases in 
the co-cultures. In a 1:1 co-culture, the percentage of 
false positives drops to 0.34 – 0.65% of all cells (Figure 4). 
This verification clearly shows that the advanced texture 
and STAR morphology properties, together with the 
PhenoLOGIC™ machine learning option, all built-in to 
Harmony high-content imaging and analysis software, 
allow the phenotypic differentiation of cell types in 
co-cultures based on Hoechst nuclear staining alone.

Phenotypic profiling of the nucleus allows 
distinguishing of seven different cell types

The PhenoLOGIC-based classification of HepG2 and 
NIH/3T3 cells in co-cultures showed that the features used 
to distinguish the two cell types were all SER and STAR 
morphology properties. This prompted an assessment 
of whether these properties alone would be sufficient 
to separate even more cell types from one another. 
Therefore, seven different cell lines, mouse fibroblasts 
(NIH/3T3), canine kidney epithelial cells (MDCK), human 
breast adenocarcinoma (MCF7), human lung carcinoma 
(A549), human hepatocellular carcinoma (HepG2) and 
human fibrosarcoma (HT1080) were seeded into a 
PhenoPlate 384-well microplate (three columns = 48 wells 
per cell type). The following day the cells were fixed and 

stained with Hoechst 33342 only. This time, single plane 
images were acquired on the Operetta CLS high-content 
analysis system using a 20x water immersion objective in 
confocal mode. A total of nine fields per well were acquired. 
Example images of the different cell types are shown in Figure 5.

Figure 4. Results of linear classification for HepG2 and NIH/3T3 cells. 
HepG2 (green bars) and NIH/3T3 (red bars) cells were either cultured 
individually or as co-cultures at different ratios. (A) The graph 
shows the percentage of cells that were classified as either 
HepG2 or NIH/3T3 by PhenoLOGIC. (B) The percentage of cells 
classified as HepG2 (green) are plotted next to the percentage of 
cells falsely classified as HepG2 (light green) identified based on 
the CellTracker staining. The percentage of false positive cells 
ranges between 0.01 – 2.2%. (C) The percentage of cells classified 
as NIH/3T3 (red) are plotted next to the percentage of cells falsely 
classified as NIH/3T3 (light red) identified based on the CellTracker 
staining. The percentage of false positive cells ranges between 
0.01 – 2.5%. HepG2 = only HepG2, 2:1 = 2x HepG2 in co-culture 
with 1x NIH/3T3 , 1:1 = 1x HepG2 in co-culture with 1x NIH/3T3, 
1:2 = 1x HepG2 in co-culture with 2x NIH/3T3, NIH/3T3 = only 
NIH/3T3, n=96 wells for mono cultures, n=64 wells for co-cultures, 
error bars represent ± one standard deviation.
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Image analysis was performed as for the co-culture 
experiment. However, this time only advanced SER 
texture and STAR morphology properties were calculated, 
not basic features such as intensity and classic morphology. 
As PhenoLOGIC can only distinguish up to six different 
classes, the SER and STAR morphology parameters were 
subjected to unsupervised principle component analysis (PCA) 
using High Content Profiler™ secondary data analysis software. 
Principal component analysis is a visualization method 

especially suited for multiparametric datasets like phenotypic 
profiles. It reduces the dimensionality of data sets allowing 
visualization of the similarities or differences among samples. 
As can be seen in Figure 6A, the seven cell lines form seven 
different well separated clusters. Each spot in the PCA 
corresponds to one well. When the plate layout information 
is used for annotation it becomes visible that each cluster is 
formed by wells from one cell line only (Figure 6B).

Figure 6. Three-dimensional Principle Component Analysis (PCA) of phenotypic profiles from seven different cell lines. The set of SER texture 
and STAR morphology parameters calculated in Harmony was subjected to PCA within High Content Profiler software. As can be seen in (A), 
seven distinct clusters are formed. If the plate layout information is used for annotation, it becomes visible that these clusters represent 
the seven different cell lines (B). Each spot represents one well. This clearly shows that SER texture and STAR morphology properties of the 
Hoechst nuclear staining are sufficient to distinguish seven different cell lines from one another.

BA

Figure 5. Nuclear phenotypes of seven different cell lines. Cells were stained with Hoechst and imaged on an Operetta CLS high-content 
analysis system using a 20x water immersion objective.
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Conclusions 

The Hoechst staining of cell nuclei contains a plethora 
of information that can be used for much more than just 
aiding in segmentation during image analysis. As we have 
shown here, phenotypic profiling of the nucleus enables 
distinguishing of cells in co-cultures. Even up to seven 
individual cell lines can be separated by leveraging the 
Hoechst nucleus staining. This type of phenotypic analysis 
can be directly applied to other cell types such as primary 
cells co-cultured with feeder cells and furthermore, 
phenotypic profiling is not limited to the nucleus. 
Applying it to other fluorescent labels or even cells labeled 
by the more broad cell painting approach2, opens up new 
horizons for unbiased drug discovery and disease research. 
The prerequisites for this type of phenotypic analysis are 
high-quality images, software for image segmentation and 
generation of phenotypic profiles and a solution to help with 
processing complex multiparametric datasets (reduction 
of dimensionality, hit selection). Revvity offers a complete 
solution for phenotypic profiling applications. Imaging on 
either the Opera Phenix or Operetta CLS High Content 
Screening systems allows users to generate the high quality 
images required. Harmony software enables primary image 
analysis with accurate image segmentation and advanced 
morphology and texture quantification methods to generate 
highly descriptive phenotypic profiles. With PhenoLOGIC, 
Harmony software also provides an easy to use machine 
learning-based classifier that helps with dimensionality 
reduction. Further secondary analysis tools for data 
exploration and analysis are available in High Content Profiler. 
Revvity’s suite of products for phenotypic profiling enables 
you to leverage the real “content” of your high-content 
screening applications.
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