Cookies on PerkinElmer
PerkinElmer uses cookies to ensure that we give you the best experience possible on our website. This may include cookies from third party websites. If you continue without changing your settings, we will assume that you consent to receive cookies from this website. You can change your cookie settings at any time. To learn more, please review our cookie policy, which includes information on how to manage your cookies.

125I Labeling of Proteins

Overview


Iodination of proteins is a common method of adding a tracer with high specific activity to your protein of interest. Several different methods are available, and these differ in terms of the amino acids that become labeled and in the reaction conditions that are used. Use the selection tables below to help you choose the best option. You may also find it convenient to contact our OnPoint custom conjugation service for help with this procedure. One commonly-used iodination method, Bolton-Hunter, is described below in detail.

Iodine isotopes have relatively short half-lives (60 days for 125I and 8 days for 131I). In addition, iodine-labeled proteins are subject to loss of activity and physical degradation due to the isotopic decay. For these reasons, iodine-labeled proteins generally should be used as soon as possible, generally within 30 days or less after labeling.

Top


Choosing an iodination technique


125I or 131I

Isotope

Recommended applications

Half-life

Decay mode

Emissions

125I

High efficiency for measurement (autoradiography, gamma counting, scintillation counting)
Most commonly used in RIA and receptor ligand binding assays
Well suited for SPA (Scintillation Proximity Assay)

60.14 days

Electron capture

Ka X-ray: 0.027 MeV (112.5%)
Kb X-ray: 0.031 MeV (25.4%)
Gamma: 0.035 MeV (6.5%)

131I

High energy gamma emissions are well suited for tissue imaging.

8.04 days

Beta decay

Gammas: 0.080 (2.6%), 0.284 (6%),
0.364 (81%), 0.637 (7.3%), & 0.723 (1.8%) Mev
X-ray: 0.030 (3.9%) MeV

 

Iodination techniques

The choice of a labeling technique depends largely on the particular amino acids available for labeling in your protein or peptide, and on its stability to the reaction conditions. PerkinElmer OnPoint custom services can perform any of the iodination techniques below and consult on the best technique for your needs.

Reaction method

Description

Applicable to

Bolton-Hunter Reagent
(mono-iodinated)

Custom labeling:
125I: NEX088
131I: NEX088A

Bolton-Hunter reagent is the N-hydroxysuccinimide ester of iodinated p-hydroxyphenylpropionic acid. The active ester acylates terminal amino groups with the iodinated p-hydxyphenylpropionic residue, effectively introducing radioactive iodine into proteins and peptides. A non-oxidative technique, it is less harsh to proteins than alternative methods.

Conjugation of terminal amino groups. Applicable to peptides and proteins containing lysine residues. The mono-iodinated form is generally recommended for most Bolton-Hunter iodinations.

Bolton-Hunter Reagent
(di-iodinated)

Custom labeling:
125I: NEX088
131I: NEX088A

Same as mono-iodinated Bolton-Hunter Reagent

Double the specific activity (or 4400 Ci/mmol) for each molecule of reagent. Use when the extra sensitivity is important relative to decrease in stability.

Lactoperoxidase

Custom labeling:
125I: NEX083
131I: NEX083A

Lactoperoxidase catalyzes the oxidation of iodide using hydrogen peroxide as the enzyme substrate. It is a milder oxidative technique than Chloramine-T.

Applicable to peptides and proteins naturally containing tyrosine, or chemically modified to introduce tyrosine (especially applicable if they contain easily oxidized methionine)

Chloramine-T

Custom labeling:
125I: NEX084
131I: NEX084A

Chloramine-T (p-toluene sulfonochloramine) is an effective method of labeling a variety of proteins and peptides. This oxidative method involves exposure of the substrate to Chloramine-T in the presence of NaI, 125I- or 131I-, for a short time and produces high specific activity proteins or peptides labeled with carrier-free radioiodine, but can be harsh.

Substitution of 125I or 131I into tyrosine residues in oxido-reducing reaction. Applicable to peptides and proteins naturally containing, or chemically modified to introduce either tyrosine or histidine.

Exchange Labeling with Sodium Iodide
Custom labeling:
125I: NEX086
131I: NEX086A

Appropriate leaving groups exchange with 125I or 131I in solvents or melts. (A melt is a heated reaction performed in a solid state, without solvent.) Catalysts may improve yields and reliability as well as shorten reaction times.

Exchange aliphatic or aromatic bromide or non-radioactive iodide. Exchange aromatic amines through diazonium salts or stabilized triazenes.

IODOGEN®Reagent

Custom labeling:
125I: NEX244
131I: NEX244A

A solid phase oxidative method similar to the Chloramine-T method. It is generally considered to be milder, because the reaction takes place on the surface of the oxidant, minimizing exposure to the substrate.

Iodogen is a water insoluble oxidizing agent which can react with 125I or 131I to form a highly reactive mixed halogen species. This intermediate can add radioactive iodine atoms to tyrosine or histidine side chain rings.

Other Custom Methods

NEX999

Propose a specific method to PerkinElmer for review and, if feasible, we will use it to perform your radioiodination.

Top


Iodination products and catalog numbers


Selecting the best 125I or 131I formulation for your needs.

Top


Iodination citations


General review of iodination

  • Robert H. Seevers and Raymond E. Counsell, Radioiodination techniques for small organic molecules. Chem. Rev. 82, 575-590. (1982) Link

Bolton-Hunter

  • Bolton, A. and Hunter, W. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem. J. 133, 529-539 (1973) Link

Chloramine-T

  • Hunter, V. and Greenwood, F. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature 194, 495-496 (1962) Link
  • Greenwood, F. et al. The preparation of I-131-labeled human growth hormone of high specific radioactivity. Biochem. 89, 114-123 (1963) Link

Lactoperoxidase

  • Marchalonis, J. An enzymic method for the trace iodination of immunoglobulins and other proteins. Biochem.J. 113, 299-305(1969) Link
  • Morrison, M. Lactoperoxidase-catalyzed iodination as a tool for investigation of proteins. Meth. Enzymol. 70, 214-220 (1980) Link

Iodogen

  • Fraker, P. and Speck, J. Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem. Biophys. Res. Commun. 80, 849-857 (1978) Link

Top


Other PerkinElmer products for labeling proteins


Top


Custom conjugation and custom assay development


PerkinElmer offers custom 125I and 131I radioiodination labelling services as well as custom assay development. If you are interested in having your peptide or protein iodinated please contact our custom teams:

ON>POINT® Custom Assay Development Services

Top