PerkinElmer

Discover Food Safety and Quality

I_am_Lab_manager_1920x400.jpg

I Am Lab Manager

Responsible for lab operation, the Lab Manager develops procedures to ensure safety, security, quality and accuracy of results and ensuring samples are processed at a reasonable cost.

Meeting various and continuously evolving regulations, delivering reliable results, while at the same time competing on cost per sample speed of analysis, and challenged with increasing profit margins are only a few of the challenges a Lab Manager faces.

Choose your industry below to discover a selection of the solutions that PerkinElmer can provide you to overcome your challenges.

Choose Your Industry

Food
Food
Food
Food
Food

Choose Your Cannabis Need

Choose Your Dairy Need

Choose Your Grain Need

Choose Your Contract Labs Need

Choose Your Meat & Seafood Need

Choose Your Cannabis Solution

Solutions

A Single Cannabis Method to Meet California Pesticide and Mycotoxin Residues Regulatory Requirements

Testing for the levels of pesticide and mycotoxins in cannabis is important to ensure consumer safety and quality control. In this work, the PerkinElmer application development team analyzed all 66 pesticides (including very hydrophobic and chlorinated pesticides typically analyzed by GC-MS/MS) and five mycotoxins spiked in cannabis flower extracts well below the action limits specified by the state of California. A LC-MS/MS instrument was used with ESI and APCI sources and a simple solvent extraction method with excellent recoveries for all analytes in acceptable range of 70-120%.

Analysis of Pesticide Residues in Cannabis Regulated by Oregon State Using LC/MS/MS

Liquid chromatography-tandem mass spectrometry (LC/MS/MS) has become the method of choice for pesticide. The state of Oregon has issued regulatory limits for 59 pesticide residues in both cannabis flower and concentrates, while other states have come up with their own lists of pesticide residues relating to medical marijuana and cannabis testing.

Analysis of Residual Solvents in Cannabis Concentrates

Solvent such as supercritical CO2, butane, propane, other hydrocarbons, water, or alcohol are used to extract out the cannabinoids and terpenes from the plant material. In some cases, the solvent and impurities from the solvent remain in the extracted material. This study will shows the analysis of residual solvents using pressure-balanced headspace (HS) sample introduction coupled with Gas Chromatography/Mass Spectrometry (GC/MS). Unambiguous separation of all compounds is obtained while maximizing sample throughput.

Cannabinoid Monitoring in a Variety of Edibles

This application describes the sample preparation and analytical method for the chromatographic separation and quantitative monitoring of twelve primary cannabinoids in the extracts of several food matrices by HPLC, using photodiode array (PDA) detection. The method provides exceptional chromatographic repeatability and affords LOQs well below the current concentration levels of interest for cannabinoids in edibles. Thereupon, the method/procedure defined herein can be expected to fulfill the essential task of ensuring product uniformity and cannabinoid screening in edible foods.

Meeting Canadian Cannabis Pesticide Residues Regulatory Requirements by LC/MS/MS

Following the 2018 legalization of recreational cannabis usage in Canada, the quality and safety of cannabis products has garnered significant attention. Health Canada has developed a regulatory program mandating pesticide testing on all cannabis products. Under the program, licensed producers (LPs) of cannabis products in Canada are required to send representative samples of products to independent laboratories for pesticide screening and quantification. In this application note, a robust and reliable method for the analysis of 96 pesticides in cannabis flower by LC/MS/MS utilizing both ESI and APCI modes is presented. The method not only offers ultra-low detection limits at or below the Health Canada regulatory levels, but also offers significant efficiency gains over other available methodologies. Utilizing LC/MS/MS with both ESI and APCI modes obviates the need to perform both GC/MS/MS and LC/MS/MS analyses to analyze all 96 regulated pesticides, saving significant time and money for operators.

Novel ESI and APCI LC/MS/MS Method for Testing Cannabis and Hemp Concentrate Samples

The use of cannabis concentrates and CBD products (edibles, topicals, vape products, etc.) has increased in popularity as new regulation has been passed legalizing medicinal and recreational use in a number of states and provinces. Testing to ensure that pesticide and mycotoxin levels in cannabis products are below regulatory levels is critical, however, the cannabis concentrate matrix presents many analytical challenges including higher sample matrix effects and an increased concentration of cannabinoids in the sample. In this application note, an LC/MS/MS method for the analysis of 66 pesticides (including hydrophobic and chlorinated pesticides typically analyzed by GC/MS/MS) and five mycotoxins in a cannabis concentrate matrix is presented. Utilizing a QSight® 420 LC/MS/MS instrument with dual APCI and ESI sources, the analysis yielded excellent recoveries and detection limits below those specified by the state of California cannabis regulations.

Everyone Can Draw with ChemDraw eBook

With its origins as a chemical drawing tool, ChemDraw has evolved steadily to become the leading chemically-intelligent solution for multiple disciplines from specialty chemistry to pharmaceutical drug discovery.Some chemists love to draw and some don't. But all of you have to share, report on, and publish your work in various formats, up to and including filing with the United States Patent and Trademarks Office. No matter which kind of chemist you are, or what your drawing and publishing requirements might be, ChemDraw® has the powerful features and integrations with critical external chemistry databases to help you publish beautiful drawings in seconds not minutes or hours. It is the gold standard for chemical drawing software. Plus, it is available in four different versions to meet your specific needs

Technologies

Gas Chromatography - Mass Spectrometry (GC-MS) in Food Testing

Gas Chromatography – Mass Spectrometry (GC-MS) is a widely used technique for qualitative and quantitative analysis of food composition, food additives, flavor and aroma components and contaminants such as pesticides, natural toxins, veterinary drugs and packaging material. Our portfolio of GC/MS solutions is designed to empower your science and ensure you receive accurate, reliable results – every time.

Liquid Chromatography (LC) in Food Testing

High-performance liquid chromatography (HPLC) is a very sensitive analytical technique increasingly used to separate and detect additives, ingredients, nutritional components, and contaminants in food. Whether you need high-performance liquid chromatography (HPLC) or ultra-high performance chromatography (UHPLC), we offer the right technology for testing your food samples, efficiently and accurately. Our robust Flexar™ HPLC and UHPLC systems perform reliably, are easy to operate, and ideal for routine analysis or even your most demanding applications.

Liquid Chromatography - Mass Spectrometry (LC-MS) in Food Testing

In recent years, to protect the health of consumers, more meticulous monitoring of food, more rigorous regulations with lower limits of quantification (LOQs) are required. The use of liquid chromatography tandem mass spectrometry (LC/MSMS) is widely recognized as the extremely sensitive and highly specific technique of choice for the determination of food contaminants at trace levels including pesticides, veterinary drugs, natural toxins, and so-called “emerging contaminants”. Our robust and reliable QSight® triple quad systems consistently deliver the throughput and productivity you need in your analytical testing lab. Our LC/MSMS solutions deliver the highest sensitivity and throughput the industry has ever seen and the capability to test for the most challenging, complex samples, including cannabis.

Sample Prep and Automation for Food Testing

Introduce samples faster and more efficiently than you can with manual insertion. We offer a wide range of autosamplers for analytical and food applications.

Choose Your Cannabis Solution

Solutions

Determination of THC and CBD in Cannabis Flower

This work shows an on-site, rapid and low-cost technique for the accurate measurement of flower potency. FT-NIR spectroscopy provides rich information regarding the chemical composition of cannabis flower. When combined with chemometrics, the FT-NIR offers unparalleled speed and simplicity that cannot be matched by traditional techniques. PerkinElmer Spectrum Two NIR with the Near Infrared Reflectance Module (NIRM) is used to quantify total THC and total CBD in dried cannabis flower. The use of FT-NIR directly at the grow site would reduce overall research and development costs for cultivators.

Technologies

FT - Infrared Spectroscopy in Food Testing

Infrared spectroscopy provides a rapid and non-destructive method for compositional analysis of food products and screen for known and unknown adulterants. With over 75 years of experience in Infrared Spectroscopy, the PerkinElmer FT-IR systems can provide multiple parameter results simultaneously, allowing higher sample throughput. Additionally, Spectrum Adulterant Screen, designed to enhance FT-IR/NIR Spectrum 10 Software, allows the development and execution of adulterant screening methods for suspected materials of concern.

FT-IR Microscopy & Imaging Systems

PerkinElmer infrared imaging and microscopy systems are the culmination of a long PerkinElmer tradition of exceptional optics and purpose-built IR microscopes and FT-IR systems. There are no add-ons or afterthoughts here. Renowned for their sensitivity, spatial resolution, ease of use, and results, they’re engineered to the highest quality specifications and ISO-9000 standards and deliver the highest levels of throughput, reproducibility, and accuracy. So you’re able to analyze even the smallest sample with pinpoint precision. It’s simply the industry’s broadest infrared instrument range and covers all modes – transmission, reflectance, and micro- and macro-Attenuated Reflectance (ATR). It’s also one of the easiest to use, even for nonprofessionals, with no (or minimal) manual adjustments necessary. And you can even get unattended operation if you need it. Nothing could be simpler.

Choose Your Cannabis Solution

Solutions

Digestion, Testing, and Validation of Heavy Metals in Cannabis

Owing to the toxicity of heavy metals, it is increasingly important to test cannabis flowers and other cannabis derivatives so that patient and consumer safety is maintained as the use of cannabis becomes more common. This need has translated into an increasing demand for testing cannabis flowers and other cannabis derivatives for toxins such as the heavy metals cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg). In this application note, we present data to illustrate the successful validation of the Titan MPS™ Microwave Sample Preparation System and the NexION® ICP-MS for the determination of heavy metals in cannabis flower according to the validation protocols set in USP General Chapter <233>, which are commonly used for evaluation of the levels of elemental impurities in samples.

Analysis of Pesticide Residues in Cannabis Regulated by Oregon State Using LC/MS/MS

Liquid chromatography-tandem mass spectrometry (LC/MS/MS) has become the method of choice for pesticide. The state of Oregon has issued regulatory limits for 59 pesticide residues in both cannabis flower and concentrates, while other states have come up with their own lists of pesticide residues relating to medical marijuana and cannabis testing.

Efficient LC/MS/MS Method for Testing Hemp Samples for Pesticide Residues

Agricultural growing of hemp products for the purposes of cannabidiol (CBD) extraction was legalized in the United States with the passing of the Agricultural Improvement Act of 2018. Since the act passed, heightened concern over the use of pesticides in hemp production has been appreciated. However, no federal guidance is currently available in the United States to standardize analytical methods for the detection and quantification of pesticide residues in hemp products. In this application note, a robust and efficient single-run LC/MS/MS method for the determination of 66 pesticides, including hydrophobic and chlorinated pesticides typically analyzed by GC/MS/MS, is presented. Utilizing a PerkinElmer QSight® 420 UHPLC with MS/MS detector and dual ESI and APCI sources, excellent recoveries in the range of 70-120% were achieved. The application note also outlines participation in an Emerald Scientific blind proficiency test, with acceptable results for all 66 pesticides.

Meeting Canadian Cannabis Pesticide Residues Regulatory Requirements by LC/MS/MS

Following the 2018 legalization of recreational cannabis usage in Canada, the quality and safety of cannabis products has garnered significant attention. Health Canada has developed a regulatory program mandating pesticide testing on all cannabis products. Under the program, licensed producers (LPs) of cannabis products in Canada are required to send representative samples of products to independent laboratories for pesticide screening and quantification. In this application note, a robust and reliable method for the analysis of 96 pesticides in cannabis flower by LC/MS/MS utilizing both ESI and APCI modes is presented. The method not only offers ultra-low detection limits at or below the Health Canada regulatory levels, but also offers significant efficiency gains over other available methodologies. Utilizing LC/MS/MS with both ESI and APCI modes obviates the need to perform both GC/MS/MS and LC/MS/MS analyses to analyze all 96 regulated pesticides, saving significant time and money for operators.

Optimization of the Decarboxylation Reaction in Cannabis Extract

Most cannabis extraction processes, independent of solvent or instrument choice, undergo a decarboxylation step whereby the carboxylic acid functional group is removed from the cannabinoids. The PerkinElmer Spectrum Two with the UATR accessory allows for the simple and rapid determination of cannabinoid concentrations in cannabis extract. The FT-IR-ATR technique offers a real-time solution to decarboxylation reaction monitoring. The ability to monitor this reaction over time would enable manufacturers of cannabis extract to optimize extraction conditions and identify process deviations. The FT-IR-ATR technique requires small sample quantities, zero sample preparation and minimal operator training.

Everyone Can Draw with ChemDraw eBook

With its origins as a chemical drawing tool, ChemDraw has evolved steadily to become the leading chemically-intelligent solution for multiple disciplines from specialty chemistry to pharmaceutical drug discovery.Some chemists love to draw and some don't. But all of you have to share, report on, and publish your work in various formats, up to and including filing with the United States Patent and Trademarks Office. No matter which kind of chemist you are, or what your drawing and publishing requirements might be, ChemDraw® has the powerful features and integrations with critical external chemistry databases to help you publish beautiful drawings in seconds not minutes or hours. It is the gold standard for chemical drawing software. Plus, it is available in four different versions to meet your specific needs

Technologies

Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) in Food Testing

Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) allows the analysis of a variety of food samples accurately for elements present at both trace and nutritional levels during the same analysis. PerkinElmer has been at the forefront of ICP-MS technology – from the very first commercial ICP-MS back in 1983 to the first instrument bringing together the detection limits of a true reaction cell and the simplicity of a collision cell in 2010, and most recently, the industry’s first four-quadrupole system – nearly four decades of patents, innovations, and accolades.

Liquid Chromatography - Mass Spectrometry (LC-MS) in Food Testing

In recent years, to protect the health of consumers, more meticulous monitoring of food, more rigorous regulations with lower limits of quantification (LOQs) are required. The use of liquid chromatography tandem mass spectrometry (LC/MSMS) is widely recognized as the extremely sensitive and highly specific technique of choice for the determination of food contaminants at trace levels including pesticides, veterinary drugs, natural toxins, and so-called “emerging contaminants”. Our robust and reliable QSight® triple quad systems consistently deliver the throughput and productivity you need in your analytical testing lab. Our LC/MSMS solutions deliver the highest sensitivity and throughput the industry has ever seen and the capability to test for the most challenging, complex samples, including cannabis.

FT-IR Microscopy & Imaging Systems

PerkinElmer infrared imaging and microscopy systems are the culmination of a long PerkinElmer tradition of exceptional optics and purpose-built IR microscopes and FT-IR systems. There are no add-ons or afterthoughts here. Renowned for their sensitivity, spatial resolution, ease of use, and results, they’re engineered to the highest quality specifications and ISO-9000 standards and deliver the highest levels of throughput, reproducibility, and accuracy. So you’re able to analyze even the smallest sample with pinpoint precision. It’s simply the industry’s broadest infrared instrument range and covers all modes – transmission, reflectance, and micro- and macro-Attenuated Reflectance (ATR). It’s also one of the easiest to use, even for nonprofessionals, with no (or minimal) manual adjustments necessary. And you can even get unattended operation if you need it. Nothing could be simpler.

Sample Prep and Automation for Food Testing

Introduce samples faster and more efficiently than you can with manual insertion. We offer a wide range of autosamplers for analytical and food applications.

Choose Your Cannabis Solution

Solutions

Efficient LC/MS/MS Method for Testing Hemp Samples for Pesticide Residues

Agricultural growing of hemp products for the purposes of cannabidiol (CBD) extraction was legalized in the United States with the passing of the Agricultural Improvement Act of 2018. Since the act passed, heightened concern over the use of pesticides in hemp production has been appreciated. However, no federal guidance is currently available in the United States to standardize analytical methods for the detection and quantification of pesticide residues in hemp products. In this application note, a robust and efficient single-run LC/MS/MS method for the determination of 66 pesticides, including hydrophobic and chlorinated pesticides typically analyzed by GC/MS/MS, is presented. Utilizing a PerkinElmer QSight® 420 UHPLC with MS/MS detector and dual ESI and APCI sources, excellent recoveries in the range of 70-120% were achieved. The application note also outlines participation in an Emerald Scientific blind proficiency test, with acceptable results for all 66 pesticides.

Determination of THC and CBD in Cannabis Flower

This work shows an on-site, rapid and low-cost technique for the accurate measurement of flower potency. FT-NIR spectroscopy provides rich information regarding the chemical composition of cannabis flower. When combined with chemometrics, the FT-NIR offers unparalleled speed and simplicity that cannot be matched by traditional techniques. PerkinElmer Spectrum Two NIR with the Near Infrared Reflectance Module (NIRM) is used to quantify total THC and total CBD in dried cannabis flower. The use of FT-NIR directly at the grow site would reduce overall research and development costs for cultivators.

Technologies

Liquid Chromatography - Mass Spectrometry (LC-MS) in Food Testing

In recent years, to protect the health of consumers, more meticulous monitoring of food, more rigorous regulations with lower limits of quantification (LOQs) are required. The use of liquid chromatography tandem mass spectrometry (LC/MSMS) is widely recognized as the extremely sensitive and highly specific technique of choice for the determination of food contaminants at trace levels including pesticides, veterinary drugs, natural toxins, and so-called “emerging contaminants”. Our robust and reliable QSight® triple quad systems consistently deliver the throughput and productivity you need in your analytical testing lab. Our LC/MSMS solutions deliver the highest sensitivity and throughput the industry has ever seen and the capability to test for the most challenging, complex samples, including cannabis.

FT - Infrared Spectroscopy in Food Testing

Infrared spectroscopy provides a rapid and non-destructive method for compositional analysis of food products and screen for known and unknown adulterants. With over 75 years of experience in Infrared Spectroscopy, the PerkinElmer FT-IR systems can provide multiple parameter results simultaneously, allowing higher sample throughput. Additionally, Spectrum Adulterant Screen, designed to enhance FT-IR/NIR Spectrum 10 Software, allows the development and execution of adulterant screening methods for suspected materials of concern.

FT-IR Microscopy & Imaging Systems

PerkinElmer infrared imaging and microscopy systems are the culmination of a long PerkinElmer tradition of exceptional optics and purpose-built IR microscopes and FT-IR systems. There are no add-ons or afterthoughts here. Renowned for their sensitivity, spatial resolution, ease of use, and results, they’re engineered to the highest quality specifications and ISO-9000 standards and deliver the highest levels of throughput, reproducibility, and accuracy. So you’re able to analyze even the smallest sample with pinpoint precision. It’s simply the industry’s broadest infrared instrument range and covers all modes – transmission, reflectance, and micro- and macro-Attenuated Reflectance (ATR). It’s also one of the easiest to use, even for nonprofessionals, with no (or minimal) manual adjustments necessary. And you can even get unattended operation if you need it. Nothing could be simpler.

Laboratory Services

Today’s scientific lab leaders are facing new pressures and demands to continue to innovate while looking for more lab productivity. With tighter deadlines, increased budget scrutiny, pressure to improve reproducibility and evolving technologies, time that could be spent on scientific activities is spent on non-core ones. To help you overcome these barriers to success, OneSource Laboratory Services has built a complete suite of solutions that provide the knowledge, applications, services and manpower today’s labs need, including uptime optimization, lab analytics and workflow solutions. Digital innovations give you access to real time reports that help you make informed decisions about your lab. And compliance issues are avoided with guidance from experts who have worked with companies like yours. Our knowledge and experience spans across industries, including Pharmaceuticals/Biopharmaceuticals, Food Safety, Environmental and Industrial. Wherever your challenges lie, OneSource Services will ensure that your lab runs at maximum efficiency, returning time to your scientists to do what they do best.

Choose Your Dairy Solution

Quality Analysis

Brochure: DairyGuard – Guarding Against the Next Melamine

Built on our industry-leading Frontier™ NIR platform, the DairyGuard system delivers fast, simple measurement that's ideal for detecting adulterants in foods. DairyGuard Milk Powder Analyzer applies advanced algorithms to screen for known and unknown economic adulterants in milk powder, as well as performing the same fast measurements routinely used for protein, moisture, and fat monitoring today.

DairyGuard: Augmenting Nutritional Testing of Milk Powder with Adulterant Screening

The value of milk powder is linked to its protein content, and standard methods for protein analysis rely on a simple nitrogen assay, with the protein concentration inferred from the nitrogen content. Consequently, the addition of chemicals rich in nitrogen can artificially increase the apparent protein and thus the price demanded. NIR spectroscopy clearly has a role to play, given its ubiquity in raw materials testing. The unique Adulterant Screen algorithm from PerkinElmer retains the strengths of non-targeted chemometric methods like SIMCA, but obtains greater sensitivity by utilizing a library of spectra of potential adulterants. The method can be easily adapted to screen new products or for new adulterants, without having to prepare mixture samples for calibration.

Solid Phase Extraction and GC/MS Analysis of Melamine Adulteration in Dairy Products

In September 2008; melamine again made global headlines with contamination and adulteration of dairy products in China. This incident occurred about 18 months after melamine contamination of pet foods.

Safety Analysis

Brochure: DairyGuard – Guarding Against the Next Melamine

Built on our industry-leading Frontier™ NIR platform, the DairyGuard system delivers fast, simple measurement that's ideal for detecting adulterants in foods. DairyGuard Milk Powder Analyzer applies advanced algorithms to screen for known and unknown economic adulterants in milk powder, as well as performing the same fast measurements routinely used for protein, moisture, and fat monitoring today.

Solid Phase Extraction and GC/MS Analysis of Melamine Adulteration in Dairy Products

In September 2008; melamine again made global headlines with contamination and adulteration of dairy products in China. This incident occurred about 18 months after melamine contamination of pet foods.

AuroFlow PR1ME BT Combo MRL Assay

The AuroFlow™ PR1ME™ BT Combo MRL Assay is able to detect 14 beta-lactam antibiotics under the European MRL levels, as well as the metabolites of ceftiofur and cephaprin below MRL levels. The assay can detect all 3 regulated tetracycline antibiotics under the European MRL.The validation results indicate that the AuroFlow™ PR1ME™ BT Combo MRL Assay is appropriate for use as a screening test for beta-lactams and tetracyclines in raw commingled cow’s milk.

Accurate Determination of Lead in Different Dairy Products by Graphite Furnace AA Spectrometry

The performance of this method was validated by assessing the Standard Reference Materials (SRMs) from the US National Institute of Standards and Technology (NIST) and China National Institute of Metrology (NIM) as well as by comparing these results with those obtained using inductively coupled plasma mass spectrometry (ICP-MS) after complete sample digestion by microwave method

Technologies

NIR - Fourier Transformation in Food Testing

Choose the Frontier™ range of Fourier Transform IR spectrometers for superior spectroscopic performance in demanding applications. Powerful and adaptable, the Frontier meets all your current analysis needs and can be expanded as your research goals evolve. An exceptional signal-to-noise ratio and photometric performance assures optimal spectral quality to ensure best-in-class sensitivity. This configurable platform provides dependable and consistent operation through years of service.

Gas Chromatography - Mass Spectrometry (GC-MS) in Food Testing

Gas Chromatography – Mass Spectrometry (GC-MS) is a widely used technique for qualitative and quantitative analysis of food composition, food additives, flavor and aroma components and contaminants such as pesticides, natural toxins, veterinary drugs and packaging material. Our portfolio of GC/MS solutions is designed to empower your science and ensure you receive accurate, reliable results – every time.

Lateral Flow

The lateral flow immunoassay is a convenient, rapid, strip-based technology for the detection of small molecules, including antibiotics and toxins, by harnessing the ability of purified antibodies to bind to one another in a highly specific and concerted movement along a membrane. We offer a range of lateral flow test strip products that can give farmers, factory workers, and scientists in numerous food industries the solutions they need to qualitatively and quantitatively confirm that the material they produce is safe for the consumer or ready for further downstream processing. Lateral flow test strips are designed to detect specific target antibiotics or analytes in a variety of sample types with high specificity and accuracy in accordance with various regulatory agencies such as the USDA, European Union and CODEX maximum residual limits (MRL). The testing procedure can be completed in minutes with minimal opportunities for error, as PerkinElmer strives to make the end-user testing experience as friendly, efficient, and accurate as possible. Results can be interpreted visually or with a PerkinElmer Lateral Flow Reader.

Atomic Absorption Spectroscopy (AA) in Food Testing

Atomic Spectroscopy (AA) is a well-established and reliable technique for the analysis of trace elements in food stuffs. With more than 50 years of experience as industry leader in Atomic Spectroscopy, PerkinElmer provides state-of-the-art instrumentation and support to food laboratories requiring excellent sensitivity, accuracy and precision in compliance with the stringent legislation to control trace elements in food products.

Choose Your Dairy Solution

Quality Analysis

Youghurt - DA 7250

For yoghurtmanufacturers, fat and dry matter contents are important quality parameters that define properties of the end product. With a large number of samples, high sample throughput and accurate determination of these parameters is of great benefit. The DA 7250 can analyze yogurt in less than 10 seconds with high accuracy. Even including inhomogeneous samples with fruit pieces and without the need to clean sample cups, vials, tubes or similar in between measurements.

Measure the level of accidity in a milk sample using FTIR technology

A method to measure the level of accidity in a milk sample using FTIR technology

Analysis of Dairy Powders Using the DA 7250 NIR

Analysis of dairy powders with high accuracy for the constituents by means of the PerkinElmer DA 7250, a proven NIR instrument designed for use in the food industry. Using novel diode array technology it performs a multi-component analysis in less than ten seconds with no sample preparation.

Analysis of the NPN - Calculated urea in raw milk

Rapid routine determination of NPN/Calculated urea in raw milk with LactoScope FTIR milk analyzers. Analysis of NPN/Calculated urea in raw milk provides a useful indication of how effectively cows digest protein in the rumen providing vital information for feeding strategies and reproductive performances.

Analysis of Micronutrients in Milk Using the Avio 200 ICP-OES

With its great importance, milk is available in several different forms: fresh, boxed (ultraheat treated), powdered, and evaporated. The most commonly consumed form varies globally, being dependent on factors such as geography, culture, and climate. For milk producers, internal quality control and the possibility of external monitoring provide strong incentives for the ability to quickly, accurately, and easily monitor nutrients in their products.

Analysis of Micronutrients in Milk by Flame AA Using FAST Flame Sample Automation for Increased Sample Throughput

This work demonstrates the ability to accurately measure nutritional elements in a variety of milk types by flame atomic absorption using FAST Flame sample automation for high sample throughput.

DairyGuard: Augmenting Nutritional Testing of Milk Powder with Adulterant Screening

The value of milk powder is linked to its protein content, and standard methods for protein analysis rely on a simple nitrogen assay, with the protein concentration inferred from the nitrogen content. Consequently, the addition of chemicals rich in nitrogen can artificially increase the apparent protein and thus the price demanded. NIR spectroscopy clearly has a role to play, given its ubiquity in raw materials testing. The unique Adulterant Screen algorithm from PerkinElmer retains the strengths of non-targeted chemometric methods like SIMCA, but obtains greater sensitivity by utilizing a library of spectra of potential adulterants. The method can be easily adapted to screen new products or for new adulterants, without having to prepare mixture samples for calibration.

Butter - DA 7250

Analysis of fat, moisture and salt is of great importance to butter plants. By accurately controlling these constituents the producer can experience significant savings. Using the DA 7250, production staff can perform their own analysis 24/7 and have instant access to the results. The results can be used for process optimization and to avoid costly mistakes and potential penalties.

Evaporated Milk - DA 7250

Evaporated milk is an important ingredient for many products and an important form for long term storage of milk. The total solids and fat content are keys to proper performance as an ingredient and long term storage. Correct uantities impart both functional and flavor characteristics. In addition, accurate control of total solids and fat can optimize profitability of the processor. The Diode Array 7250 can accurately analyze evaporated milk for total soids and fat content. The speed of analysis allows users to easily and accurately analyze many samples a day in nearly real time.

Analysis of Ice Cream Mix for Fat and Total Solids Content

Accurate control of butterfat and total solids in ice cream mix affects both quality and profitability. The combination of butterfat and total solids affects texture thereby impacting quality and mouth-feel. The DA 7250 can accurately analyze ice cream mix for fat and solids content. The speed of analysis allows users to easily and accurately analyze many samples a day in nearly real time.

The Elemental Analysis of Milk Powder with NexION 300/350 ICP-MS

This work demonstrates the ability of PerkinElmer’s ICP-MS to effectively measure macro-level nutritional elements in the same analysis run as lower-level elements,without having to dilute the samples. The agreement between experimental and certified results for NIST® 1549 Milk Powder demonstrates the accuracy of the analysis. Instrument design characteristics eliminate deposition on the ion optics, leading to long-term stability in high-matrix samples, while permitting trace levels to be accurately measured.

Safety Analysis

Validation results of the AuroFlow PRIME Beta-Lactam MRL Assay

AuroFlow™ PRIME Beta-Lactam MRL Assay (Bioo Scientific, Austin, TX) is a competitive receptor test in dipstick format for the rapid detection of residues of ?-lactams (penicillins and cefalosporins) in raw commingled cows’ milk. The time to result for the one-step assay is 3 minutes.

Determination, Confirmation and Quantitation of Multi-Class Antibiotic Residues in Milk by UHPLC MS/

A rapid, rugged and reliable LC/MS/MS method for the analysis of different antibiotic classes in milk with a simple sample preparation method showing good recoveries for most of the antibiotic classes. This method allowes the identification and quantification of target compounds in low ppb range (0.1 to 1 ppb) in milk with good precision and retention time stability.

Milk Adulteration with Melamine – Screening, Testing and Real-Time Detection

Screening, testing or real-time detection can be utilized to detect melamine-adulterated milk in a supply chain.The determination of where the sampling is taking place, who is carrying out the measurement and whether the testing is to meet regulation defines which technology to use.

Technologies

NIR - Fourier Transformation in Food Testing

Choose the Frontier™ range of Fourier Transform IR spectrometers for superior spectroscopic performance in demanding applications. Powerful and adaptable, the Frontier meets all your current analysis needs and can be expanded as your research goals evolve. An exceptional signal-to-noise ratio and photometric performance assures optimal spectral quality to ensure best-in-class sensitivity. This configurable platform provides dependable and consistent operation through years of service.

NIR - Diode Array in Food Testing

Thanks to Diode Array NIR technology, multi-constituent results are available in less than 10 seconds rather than several hours as with many traditional chemical analysis methods. During this time a large number of full spectra are collected and averaged. The analysis of full spectra makes it possible to determine complex parameters and to analyze different samples without recalibration. With the ability to analyze as often as desired with results in real-time, food processors can reduce product variations and thereby improve quality and profit.

Dedicated IR Milk Analyzer

A state-of-the art FT-IR (Fourier- Transform Infrared Spectroscopy) instrument with modern optics and simple to use but powerful software enables the LactoScope to test raw, standardized and processed milks, whey, cream and other dairy products. The instrument incorporates the latest mid-infrared (MIR) technology for quick measuring time of 30-45 seconds with a typical accuracy of under 1% CV. The instrument's modular construction minimizes the vibration of the FT-IR bench, and its integrated design provides efficient use of laboratory space. The LactoScope has a low cost of ownership, minimum downtime, and worldwide support for all its users.

Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES, ICP-AES) in Food Testing

Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES, ICP-AES) is a sensitive and reliable technique for multi-elemental analysis of toxic, nutritional and essential elements for food quality and safety monitoring. The Avio® series ICP-OES spectrometers combine cutting-edge instrumentation and intuitive software with the industry’s largest service and knowledgeable support network for the highest levels of performance in multi-element inorganic analyses.

Atomic Absorption Spectroscopy (AA) in Food Testing

Atomic Spectroscopy (AA) is a well-established and reliable technique for the analysis of trace elements in food stuffs. With more than 50 years of experience as industry leader in Atomic Spectroscopy, PerkinElmer provides state-of-the-art instrumentation and support to food laboratories requiring excellent sensitivity, accuracy and precision in compliance with the stringent legislation to control trace elements in food products.

Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) in Food Testing

Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) allows the analysis of a variety of food samples accurately for elements present at both trace and nutritional levels during the same analysis. PerkinElmer has been at the forefront of ICP-MS technology – from the very first commercial ICP-MS back in 1983 to the first instrument bringing together the detection limits of a true reaction cell and the simplicity of a collision cell in 2010, and most recently, the industry’s first four-quadrupole system – nearly four decades of patents, innovations, and accolades.

Immunoassays in Food Testing

As a leader in the food and feed safety testing industry, PerkinElmer develops, manufactures, and markets a wide range of test kits for the detection of antibiotics, hormones, veterinary drug residues, natural toxins, pathogens, and a variety of industrial contaminants found within the global food chain. Our goal is to provide food producers, processors, and government agencies with high quality test kits enabling compliance with global and local regulations to produce safe food for their customers. Highlights of our food and feed safety product line include: AuroFlow™ branded rapid lateral flow devices allowing customers to test for antibiotics in raw milk in 7 minutes or less, with little or no required equipment; MaxSignal® ELISA kits, including some of the most sensitive tests on the market, and offering a broad range of solutions for any customer; AOAC-approved kit for detection of histamine with as little as 15 minutes from sample to results. The Solus Pathogen Detection System provides robust and highly efficient assays for the detection of Salmonella, Listeria or E. coli O157. All assays are validated by external independent laboratories to AFNOR 16140 and/or certified by the AOAC Performance Tested Method program. With our quality management system certified to ISO 9001 standards, we strive to deliver high quality products and services in conjunction with exceptional customer service and technical support.

Liquid Chromatography - Mass Spectrometry (LC-MS) in Food Testing

In recent years, to protect the health of consumers, more meticulous monitoring of food, more rigorous regulations with lower limits of quantification (LOQs) are required. The use of liquid chromatography tandem mass spectrometry (LC/MSMS) is widely recognized as the extremely sensitive and highly specific technique of choice for the determination of food contaminants at trace levels including pesticides, veterinary drugs, natural toxins, and so-called “emerging contaminants”. Our robust and reliable QSight® triple quad systems consistently deliver the throughput and productivity you need in your analytical testing lab. Our LC/MSMS solutions deliver the highest sensitivity and throughput the industry has ever seen and the capability to test for the most challenging, complex samples, including cannabis.

Gas Chromatography - Mass Spectrometry (GC-MS) in Food Testing

Gas Chromatography – Mass Spectrometry (GC-MS) is a widely used technique for qualitative and quantitative analysis of food composition, food additives, flavor and aroma components and contaminants such as pesticides, natural toxins, veterinary drugs and packaging material. Our portfolio of GC/MS solutions is designed to empower your science and ensure you receive accurate, reliable results – every time.

Choose Your Dairy Solution

Quality Analysis

Screening for Melamine Adulteration in Protein-Based Foods by GC/MS

A robust, efficient and definitive analysis of melamine and related analogues. The sample preparation, including extraction and derivatization, are discussed in this paper in addition to the optimized gas chromatography/mass spectrometry(GC/MS) method.

Analysis of Dairy Powders Using the DA 7250 NIR

Analysis of dairy powders with high accuracy for the constituents by means of the PerkinElmer DA 7250, a proven NIR instrument designed for use in the food industry. Using novel diode array technology it performs a multi-component analysis in less than ten seconds with no sample preparation.

Analysis of Micronutrients in Milk Using the Avio 200 ICP-OES

With its great importance, milk is available in several different forms: fresh, boxed (ultraheat treated), powdered, and evaporated. The most commonly consumed form varies globally, being dependent on factors such as geography, culture, and climate. For milk producers, internal quality control and the possibility of external monitoring provide strong incentives for the ability to quickly, accurately, and easily monitor nutrients in their products.

DairyGuard: Augmenting Nutritional Testing of Milk Powder with Adulterant Screening

The value of milk powder is linked to its protein content, and standard methods for protein analysis rely on a simple nitrogen assay, with the protein concentration inferred from the nitrogen content. Consequently, the addition of chemicals rich in nitrogen can artificially increase the apparent protein and thus the price demanded. NIR spectroscopy clearly has a role to play, given its ubiquity in raw materials testing. The unique Adulterant Screen algorithm from PerkinElmer retains the strengths of non-targeted chemometric methods like SIMCA, but obtains greater sensitivity by utilizing a library of spectra of potential adulterants. The method can be easily adapted to screen new products or for new adulterants, without having to prepare mixture samples for calibration.

The Elemental Analysis of Milk Powder with NexION 300/350 ICP-MS

This work demonstrates the ability of PerkinElmer’s ICP-MS to effectively measure macro-level nutritional elements in the same analysis run as lower-level elements,without having to dilute the samples. The agreement between experimental and certified results for NIST® 1549 Milk Powder demonstrates the accuracy of the analysis. Instrument design characteristics eliminate deposition on the ion optics, leading to long-term stability in high-matrix samples, while permitting trace levels to be accurately measured.

Analysis of Micronutrients in Milk by Flame Atomic Absorption Using FAST Flame Sample Automation for Increased Sample Throughput

This work demonstrates the ability to accurately measure nutritional elements in a variety of milk types by flame atomic absorption using FAST Flame sample automation for high sample throughput.

Dairy Powders - DA 7250

The Near Infrared Reflectance (NIR) technique is particularly suited for measurement of dairy powders. In this work the DA 7250 shows very accurate and reproducible results when compared to the results from the reference methods.

Evaporated Milk - DA 7250

Evaporated milk is an important ingredient for many products and an important form for long term storage of milk. The total solids and fat content are keys to proper performance as an ingredient and long term storage. Correct uantities impart both functional and flavor characteristics. In addition, accurate control of total solids and fat can optimize profitability of the processor. The Diode Array 7250 can accurately analyze evaporated milk for total soids and fat content. The speed of analysis allows users to easily and accurately analyze many samples a day in nearly real time.

Analysis of Ice Cream Mix for Fat and Total Solids Content

Accurate control of butterfat and total solids in ice cream mix affects both quality and profitability. The combination of butterfat and total solids affects texture thereby impacting quality and mouth-feel. The DA 7250 can accurately analyze ice cream mix for fat and solids content. The speed of analysis allows users to easily and accurately analyze many samples a day in nearly real time.

Screening for Melamine in milk by Lactoscope FTIR

A practical screening method for the presence of melamine down to a level of 500 ppm or 0.05%m/m using Lactoscope FTIR is presented here. The discrimination limit can be further reduced to 100 ppm (0.01%m/m) using the melamine specific detection model.

Safety Analysis

Screening for Melamine Adulteration in Protein-Based Foods by GC/MS

A robust, efficient and definitive analysis of melamine and related analogues. The sample preparation, including extraction and derivatization, are discussed in this paper in addition to the optimized gas chromatography/mass spectrometry(GC/MS) method.

Milk Adulteration with Melamine – Screening, Testing and Real-Time Detection

Screening, testing or real-time detection can be utilized to detect melamine-adulterated milk in a supply chain.The determination of where the sampling is taking place, who is carrying out the measurement and whether the testing is to meet regulation defines which technology to use.

Technologies

Gas Chromatography - Mass Spectrometry (GC-MS) in Food Testing

Gas Chromatography – Mass Spectrometry (GC-MS) is a widely used technique for qualitative and quantitative analysis of food composition, food additives, flavor and aroma components and contaminants such as pesticides, natural toxins, veterinary drugs and packaging material. Our portfolio of GC/MS solutions is designed to empower your science and ensure you receive accurate, reliable results – every time.

Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) in Food Testing

Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) allows the analysis of a variety of food samples accurately for elements present at both trace and nutritional levels during the same analysis. PerkinElmer has been at the forefront of ICP-MS technology – from the very first commercial ICP-MS back in 1983 to the first instrument bringing together the detection limits of a true reaction cell and the simplicity of a collision cell in 2010, and most recently, the industry’s first four-quadrupole system – nearly four decades of patents, innovations, and accolades.

NIR - Diode Array in Food Testing

Thanks to Diode Array NIR technology, multi-constituent results are available in less than 10 seconds rather than several hours as with many traditional chemical analysis methods. During this time a large number of full spectra are collected and averaged. The analysis of full spectra makes it possible to determine complex parameters and to analyze different samples without recalibration. With the ability to analyze as often as desired with results in real-time, food processors can reduce product variations and thereby improve quality and profit.

Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES, ICP-AES) in Food Testing

Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES, ICP-AES) is a sensitive and reliable technique for multi-elemental analysis of toxic, nutritional and essential elements for food quality and safety monitoring. The Avio® series ICP-OES spectrometers combine cutting-edge instrumentation and intuitive software with the industry’s largest service and knowledgeable support network for the highest levels of performance in multi-element inorganic analyses.

Atomic Absorption Spectroscopy (AA) in Food Testing

Atomic Spectroscopy (AA) is a well-established and reliable technique for the analysis of trace elements in food stuffs. With more than 50 years of experience as industry leader in Atomic Spectroscopy, PerkinElmer provides state-of-the-art instrumentation and support to food laboratories requiring excellent sensitivity, accuracy and precision in compliance with the stringent legislation to control trace elements in food products.

Dedicated IR Milk Analyzer

A state-of-the art FT-IR (Fourier- Transform Infrared Spectroscopy) instrument with modern optics and simple to use but powerful software enables the LactoScope to test raw, standardized and processed milks, whey, cream and other dairy products. The instrument incorporates the latest mid-infrared (MIR) technology for quick measuring time of 30-45 seconds with a typical accuracy of under 1% CV. The instrument's modular construction minimizes the vibration of the FT-IR bench, and its integrated design provides efficient use of laboratory space. The LactoScope has a low cost of ownership, minimum downtime, and worldwide support for all its users.

Choose Your Dairy Solution

Quality Analysis

Youghurt - DA 7250

For yoghurtmanufacturers, fat and dry matter contents are important quality parameters that define properties of the end product. With a large number of samples, high sample throughput and accurate determination of these parameters is of great benefit. The DA 7250 can analyze yogurt in less than 10 seconds with high accuracy. Even including inhomogeneous samples with fruit pieces and without the need to clean sample cups, vials, tubes or similar in between measurements.

Measure the level of accidity in a milk sample using FTIR technology

A method to measure the level of accidity in a milk sample using FTIR technology

Determination of the Freezing Point Depression of Milk

The LactoScope method for the prediction of the freezing point depression (FPD) of milk is based on a method described by J. Koops et al. (1989). The FPD is predicted from the sample conductivity and infrared measurements for the concentrations of fat, protein and lactose of a sample.

Cheese melt method - RVA 30.04

Cheese melting temperature and viscosity are important quality characteristics for processing and consumption of cheeses such as mozzarella. The melt characteristics of grated cheese can be measured in the RVA in the presence of a small amount of propylene glycol. The RVA parameters including temperature at melting, minimum viscosity and temperature at solidification are good indicators of the meltability of a processed cheese sample.

Butter - DA 7250

Analysis of fat, moisture and salt is of great importance to butter plants. By accurately controlling these constituents the producer can experience significant savings. Using the DA 7250, production staff can perform their own analysis 24/7 and have instant access to the results. The results can be used for process optimization and to avoid costly mistakes and potential penalties.

Safety Analysis

Solid Phase Extraction and GC/MS Analysis of Melamine Adulteration in Dairy Products

In September 2008; melamine again made global headlines with contamination and adulteration of dairy products in China. This incident occurred about 18 months after melamine contamination of pet foods.

AuroFlow PR1ME BT Combo MRL Assay

The AuroFlow™ PR1ME™ BT Combo MRL Assay is able to detect 14 beta-lactam antibiotics under the European MRL levels, as well as the metabolites of ceftiofur and cephaprin below MRL levels. The assay can detect all 3 regulated tetracycline antibiotics under the European MRL.The validation results indicate that the AuroFlow™ PR1ME™ BT Combo MRL Assay is appropriate for use as a screening test for beta-lactams and tetracyclines in raw commingled cow’s milk.

Accurate Determination of Lead in Different Dairy Products by Graphite Furnace AA Spectrometry

The performance of this method was validated by assessing the Standard Reference Materials (SRMs) from the US National Institute of Standards and Technology (NIST) and China National Institute of Metrology (NIM) as well as by comparing these results with those obtained using inductively coupled plasma mass spectrometry (ICP-MS) after complete sample digestion by microwave method

Technologies

Gas Chromatography - Mass Spectrometry (GC-MS) in Food Testing

Gas Chromatography – Mass Spectrometry (GC-MS) is a widely used technique for qualitative and quantitative analysis of food composition, food additives, flavor and aroma components and contaminants such as pesticides, natural toxins, veterinary drugs and packaging material. Our portfolio of GC/MS solutions is designed to empower your science and ensure you receive accurate, reliable results – every time.

NIR - Diode Array in Food Testing

Thanks to Diode Array NIR technology, multi-constituent results are available in less than 10 seconds rather than several hours as with many traditional chemical analysis methods. During this time a large number of full spectra are collected and averaged. The analysis of full spectra makes it possible to determine complex parameters and to analyze different samples without recalibration. With the ability to analyze as often as desired with results in real-time, food processors can reduce product variations and thereby improve quality and profit.

Functional & Thermal Analysis in Food

Functional and physical testing in food is used to evaluate key properties of food products to obtain information about the quality of the food product and manufacturing process parameters that are critical for guaranteeing product consistency. PerkinElmer is a leading supplier of advanced analytical instruments and analyzers for the food and agricultural industries. Our wide range of innovative products for quality control of grain, flour, dairy, feed and food for functional analysis are unique in the industry. Our analyzers test functionality of ingredients for product development, quality and process control and quality assurance. They are placed at field and manufacturing sites, in R&D facilities, and in laboratories. These analyzers help to develop better products, reduce waste and improve efficiency every day.

Atomic Absorption Spectroscopy (AA) in Food Testing

Atomic Spectroscopy (AA) is a well-established and reliable technique for the analysis of trace elements in food stuffs. With more than 50 years of experience as industry leader in Atomic Spectroscopy, PerkinElmer provides state-of-the-art instrumentation and support to food laboratories requiring excellent sensitivity, accuracy and precision in compliance with the stringent legislation to control trace elements in food products.

Choose Your Grain Solution

Quality Analysis

Brewing adjuncts method - RVA 17.04

This application describes the use of an RVA to assess the effect of added ingredients on the mashing behavior of a malt. Malts are tested with and without added enzymes, adjuncts or chemicals (e.g. pH modifiers). The differences are used to determine the improvement or deterioration in mashing behavior of the malt due to the addition.

High Temperature Jet Cooking Method - RVA 48.01

This high temperature RVA method is applicable to any unmodifies and modified starches and their derivatives, including composites with hydrocolloids and lipids. High shear is used in the method to approximate typical processing conditions for these ingredients, which are commonly used as far replacers, gelling agents and stabilizers, and as paper wet end, size press and coating additives.

Semolina Method - doughLAB 03.02

This method describes an accelerated procedure for testing semolina samples using the doughLAB. Using a faster mixing speed, results can be obtained quicker and more accurately. The method is applicable to flour that is very strong or is difficult to develop.

Method for Effects of Additives to Flour Quality - doughLAB 02.01

Formulations for breads, cakes and baked products usually include a combination of additives to improve dough stability, texture and organoleptic qualities. Some of the more common additives include reducing and oxidizing agents, salt, sugar, enzymes, and emulsifiers. The effects of these additives on dough quality can be examined on the doughLAB, by comparing a sample with and without the additive. A longer test profile is used to allow for the strengthening effect of some of the additives to be fully observed.

Pregelatinized starch method - RVA 42.01

Raw starch pasting curves have a typical low initial (cold) viscosity, followed by a viscosity peak caused by swelling of the raw starch granules, and a relatively high setback viscosity. Processing by thermal and mechanical inputs will progressively reduce peak and setback viscosities. Cold viscosities will increase through a pre-gelatinization effect, and then eventually decrease through granule rupture and dextrinization, as the prior degree of cook increases. The RVA can therefore be used to assess how cooked a product is, with applications for system characterization, at-line process control, product development, scale-up, transfer, troubleshooting and assessment of competitive products.

Rice (Japanese) method - RVA 22.03

Rice sensory quality is of prime importance throughout Asia where rice is a staple food. This RVA method, developed by The Food Agency in Japan, provides a longer profile than Method 10, to better discriminate between rice samples of similar quality.

Starch (unmodified dent) method - RVA ST06.02

The method is applicable to unmodified dent corn starches. The final temperature of 65°C (149°F) is used to rapidly stabilize viscosity and minimize retrogradation. Combining speed, precision, flexibility and automation, the RVA is a unique tool for product development, quality and process control and quality assurance.

Wheat flour method (ethanol) - RVA 24.02

Wheat flour quality can vary greatly between samples. The quality of the gluten protein in wheat flour largely determines its suitability for use in many products including pan breads, flat breads, cakes, pastries and alkaline noodles, although each application requires a different quality. For example, strong wheat flour is preferred for commercially produced pan breads because of its good mixing tolerance and superior baking qualities. Combining speed, precision, flexibility and automation, the RVA is a unique tool for product development, quality and process control and quality assurance.

Technologies

Functional & Thermal Analysis in Food

Functional and physical testing in food is used to evaluate key properties of food products to obtain information about the quality of the food product and manufacturing process parameters that are critical for guaranteeing product consistency. PerkinElmer is a leading supplier of advanced analytical instruments and analyzers for the food and agricultural industries. Our wide range of innovative products for quality control of grain, flour, dairy, feed and food for functional analysis are unique in the industry. Our analyzers test functionality of ingredients for product development, quality and process control and quality assurance. They are placed at field and manufacturing sites, in R&D facilities, and in laboratories. These analyzers help to develop better products, reduce waste and improve efficiency every day.

NIR - Diode Array in Food Testing

Thanks to Diode Array NIR technology, multi-constituent results are available in less than 10 seconds rather than several hours as with many traditional chemical analysis methods. During this time a large number of full spectra are collected and averaged. The analysis of full spectra makes it possible to determine complex parameters and to analyze different samples without recalibration. With the ability to analyze as often as desired with results in real-time, food processors can reduce product variations and thereby improve quality and profit.

Choose Your Grain Solution

Quality Analysis

Brewing adjuncts method - RVA 17.04

This application describes the use of an RVA to assess the effect of added ingredients on the mashing behavior of a malt. Malts are tested with and without added enzymes, adjuncts or chemicals (e.g. pH modifiers). The differences are used to determine the improvement or deterioration in mashing behavior of the malt due to the addition.

Analysis of Wheat Flour Using the DA 7250 NIR Analyzer

Flour millers need to adhere to strict quality specifications and deliver a consistent product even when incoming wheat varies. At the same time mill profitability depends on maximizing the extraction. Being able to quickly determine key characteristics in the flour is thus of great importance. DA 7250 can determine all these characteristics in seconds.

Analysis of Batters & Coatings for Total Solids Using DA 7200 NIR Diode Array Based Analysis System

Analysis of Total Solids of batter and coatings is an important process control measurement for potato processors. By accurately controlling solids, the producer can experience significant savings. Realizing these savings is dependent both upon the accuracy of the analyses and the availability of real-time results. Using the DA 7200, production staff can perform their own analysis 24/7 and have instant access to the results. The results can be used to ensure the proper solids are available to the potatoes, to reduce waste, and to avoid costly mistakes and potential penalties.

Safety Analysis

Analysis of Mycotoxins in Multi-Grain and Corn Cereals

Mycotoxins produced by fungi as toxic secondary metabolites, leave grains, maize and cereals particularly vulnerable. With this in mind, and considering that an estimated 25% of all crops show some signs of mycotoxin contamination, many countries have established regulatory guidelines for maximum mycotoxin limits in not only feed and grain, but also in processed food products.

Determination of Mycotoxins in Cereals by LC/MS/MS with Online SPE

Mycotoxins are toxic secondary metabolites produced by fungi, and are capable of causing disease and death in both humans and animals. Sample preparation is a critical step in the successful analysis of mycotoxins in food matrices. The "dilute and shoot" approach is a quick and easy way to introduce the sample into the LC/MS/MS analysis. However, due to the complexity of food matrices, this approach will often result in irreproducible matrix effects. To overcome these problems and improve sensitivity, this application note details the use of online solid phase extraction (SPE), coupled to an LC/MS/MS system for sample enrichment.

AuroFlow and ELISA Kits Testing for Mycotoxins and Alfatoxins in Grain

Mycotoxins are naturally occurring toxins produced by molds or fungi, most often developed due to extreme weather events. To help you detect mycotoxins and aflatoxins in grain and cereals, PerkinElmer has developed a wide range of test kits and strip tests able to perform key protective measures and ensure grains are free of harmful toxins before entering the food supply. A comprehensive brochure is available to give an overview of our best-in-class accessories that can provide you with the most reliable food safety tests and analysis.

Rapid Quantitative Tests for Mycotoxins

The AuroFlow AQ mycotoxin panel is rapid quantitative lateral flow assays designed to detect total aflatoxin (B1, B2, G1 and G2), zearalenone, fumonisin, ochratoxin a, and T-2/HT-2.

Technologies

Liquid Chromatography - Mass Spectrometry (LC-MS) in Food Testing

In recent years, to protect the health of consumers, more meticulous monitoring of food, more rigorous regulations with lower limits of quantification (LOQs) are required. The use of liquid chromatography tandem mass spectrometry (LC/MSMS) is widely recognized as the extremely sensitive and highly specific technique of choice for the determination of food contaminants at trace levels including pesticides, veterinary drugs, natural toxins, and so-called “emerging contaminants”. Our robust and reliable QSight® triple quad systems consistently deliver the throughput and productivity you need in your analytical testing lab. Our LC/MSMS solutions deliver the highest sensitivity and throughput the industry has ever seen and the capability to test for the most challenging, complex samples, including cannabis.

Functional & Thermal Analysis in Food

Functional and physical testing in food is used to evaluate key properties of food products to obtain information about the quality of the food product and manufacturing process parameters that are critical for guaranteeing product consistency. PerkinElmer is a leading supplier of advanced analytical instruments and analyzers for the food and agricultural industries. Our wide range of innovative products for quality control of grain, flour, dairy, feed and food for functional analysis are unique in the industry. Our analyzers test functionality of ingredients for product development, quality and process control and quality assurance. They are placed at field and manufacturing sites, in R&D facilities, and in laboratories. These analyzers help to develop better products, reduce waste and improve efficiency every day.

Immunoassays in Food Testing

As a leader in the food and feed safety testing industry, PerkinElmer develops, manufactures, and markets a wide range of test kits for the detection of antibiotics, hormones, veterinary drug residues, natural toxins, pathogens, and a variety of industrial contaminants found within the global food chain. Our goal is to provide food producers, processors, and government agencies with high quality test kits enabling compliance with global and local regulations to produce safe food for their customers. Highlights of our food and feed safety product line include: AuroFlow™ branded rapid lateral flow devices allowing customers to test for antibiotics in raw milk in 7 minutes or less, with little or no required equipment; MaxSignal® ELISA kits, including some of the most sensitive tests on the market, and offering a broad range of solutions for any customer; AOAC-approved kit for detection of histamine with as little as 15 minutes from sample to results. The Solus Pathogen Detection System provides robust and highly efficient assays for the detection of Salmonella, Listeria or E. coli O157. All assays are validated by external independent laboratories to AFNOR 16140 and/or certified by the AOAC Performance Tested Method program. With our quality management system certified to ISO 9001 standards, we strive to deliver high quality products and services in conjunction with exceptional customer service and technical support.

NIR - Diode Array in Food Testing

Thanks to Diode Array NIR technology, multi-constituent results are available in less than 10 seconds rather than several hours as with many traditional chemical analysis methods. During this time a large number of full spectra are collected and averaged. The analysis of full spectra makes it possible to determine complex parameters and to analyze different samples without recalibration. With the ability to analyze as often as desired with results in real-time, food processors can reduce product variations and thereby improve quality and profit.

Choose Your Grain Solution

Quality Analysis

Brewing adjuncts method - RVA 17.04

This application describes the use of an RVA to assess the effect of added ingredients on the mashing behavior of a malt. Malts are tested with and without added enzymes, adjuncts or chemicals (e.g. pH modifiers). The differences are used to determine the improvement or deterioration in mashing behavior of the malt due to the addition.

Wheat proteolytic insect damage detection method - RVA 40.01

Insect damage of wheat grains results in reduced flour quality, which leads to weak doughs, breads of low volume and poor texture. The insect injects its saliva into the grain and lay eggs that hatch and develop in vivo, often leaving no visible external damage. This method shows the use the RVA to rapidly differentiate sound and insect-damaged wheat samples.

Method for Effects of Additives to Flour Quality - doughLAB 02.01

Formulations for breads, cakes and baked products usually include a combination of additives to improve dough stability, texture and organoleptic qualities. Some of the more common additives include reducing and oxidizing agents, salt, sugar, enzymes, and emulsifiers. The effects of these additives on dough quality can be examined on the doughLAB, by comparing a sample with and without the additive. A longer test profile is used to allow for the strengthening effect of some of the additives to be fully observed.

Pregelatinized starch method - RVA 42.01

Raw starch pasting curves have a typical low initial (cold) viscosity, followed by a viscosity peak caused by swelling of the raw starch granules, and a relatively high setback viscosity. Processing by thermal and mechanical inputs will progressively reduce peak and setback viscosities. Cold viscosities will increase through a pre-gelatinization effect, and then eventually decrease through granule rupture and dextrinization, as the prior degree of cook increases. The RVA can therefore be used to assess how cooked a product is, with applications for system characterization, at-line process control, product development, scale-up, transfer, troubleshooting and assessment of competitive products.

Rice (Japanese) method - RVA 22.03

Rice sensory quality is of prime importance throughout Asia where rice is a staple food. This RVA method, developed by The Food Agency in Japan, provides a longer profile than Method 10, to better discriminate between rice samples of similar quality.

Starch (unmodified dent) method - RVA ST06.02

The method is applicable to unmodified dent corn starches. The final temperature of 65°C (149°F) is used to rapidly stabilize viscosity and minimize retrogradation. Combining speed, precision, flexibility and automation, the RVA is a unique tool for product development, quality and process control and quality assurance.

Starch (waxy cook-up) method - RVA ST01.03

This method is applicable to unmodified, substituted (acetyl or hydroxypropyl), crosslinked, and both substituted and crosslinked waxy corn starch. These cook-up food starches are used widely as thickeners and stabilizers in products such as gravies, sauces, soups, pie fillings, dairy foods, puddings and retorted products. The Rapid Visco Analyser (RVA) is a cooking stirring viscometer with ramped temperature and variable shear profiles optimized for testing viscous properties.

Wheat flour method (ethanol) - RVA 24.02

Wheat flour quality can vary greatly between samples. The quality of the gluten protein in wheat flour largely determines its suitability for use in many products including pan breads, flat breads, cakes, pastries and alkaline noodles, although each application requires a different quality. For example, strong wheat flour is preferred for commercially produced pan breads because of its good mixing tolerance and superior baking qualities. Combining speed, precision, flexibility and automation, the RVA is a unique tool for product development, quality and process control and quality assurance.

Safety Analysis

Analysis of Mycotoxins in Multi-Grain and Corn Cereals

Mycotoxins produced by fungi as toxic secondary metabolites, leave grains, maize and cereals particularly vulnerable. With this in mind, and considering that an estimated 25% of all crops show some signs of mycotoxin contamination, many countries have established regulatory guidelines for maximum mycotoxin limits in not only feed and grain, but also in processed food products.

Fast Digestion Analysis of Lead and Cadmium in Rice Using Graphite Furnace Atomic Absorption

Lead (Pb) and cadmium (Cd) are common pollutants in grains and are extremely toxic. Pb is harmful to human organs even at trace levels, and once it accumulates in the body, it causes inhibition of hemoglobin formation and neurological disorders. Cd is even classified as human carcinogen [Group 1 - according to International Agency for Research on Cancer]. It is reported that Cd leads to severe kidney problems which can be fatal and is also associated with brittle bones and liver problems. Rice, as the most widely consumed cereal grain in Asia/China, can quickly pick up Pb and Cd from toxins, pesticides and fertilizers in the soil, thereby endangering the health of millions of people through their diet. Therefore, it is extremely important to develop a simple, reliable method to monitor the levels of Pb and Cd in rice. According to Chinese national standard GB 2715-2016 Hygienic Standard for Grain, the maximum concentrations of Pb or Cd in grains must be below 0.2 mg/kg; the allowable level in the European Union is the same [EC 1881/2006]. The official technique for the determination of heavy metals in both cases is graphite furnace atomic absorption spectroscopy (GFAAS, GB/T 5009. 12-2017, GB/T 5009-2017. 15 and EN 14083:2003). Samples can be pretreated using various methods, including microwave digestion, hot block digestion, dry ashing, and hot plate digestion. It is found that these conventional digestion procedures are always complicated and time-consuming (two-four hours or even longer). Plus, conventional sample preparation techniques require large quantities of corrosive and oxidizing reagents, increasing the chance for contamination which could lead to inaccurate results. Special PTFE vessels are needed for microwave digestion; however, reusable utensils might also cause cross contamination.

AuroFlow and ELISA Kits Testing for Mycotoxins and Alfatoxins in Grain

Mycotoxins are naturally occurring toxins produced by molds or fungi, most often developed due to extreme weather events. To help you detect mycotoxins and aflatoxins in grain and cereals, PerkinElmer has developed a wide range of test kits and strip tests able to perform key protective measures and ensure grains are free of harmful toxins before entering the food supply. A comprehensive brochure is available to give an overview of our best-in-class accessories that can provide you with the most reliable food safety tests and analysis.

Rapid Quantitative Tests for Mycotoxins

The AuroFlow AQ mycotoxin panel is rapid quantitative lateral flow assays designed to detect total aflatoxin (B1, B2, G1 and G2), zearalenone, fumonisin, ochratoxin a, and T-2/HT-2.

Technologies

Functional & Thermal Analysis in Food

Functional and physical testing in food is used to evaluate key properties of food products to obtain information about the quality of the food product and manufacturing process parameters that are critical for guaranteeing product consistency. PerkinElmer is a leading supplier of advanced analytical instruments and analyzers for the food and agricultural industries. Our wide range of innovative products for quality control of grain, flour, dairy, feed and food for functional analysis are unique in the industry. Our analyzers test functionality of ingredients for product development, quality and process control and quality assurance. They are placed at field and manufacturing sites, in R&D facilities, and in laboratories. These analyzers help to develop better products, reduce waste and improve efficiency every day.

Liquid Chromatography - Mass Spectrometry (LC-MS) in Food Testing

In recent years, to protect the health of consumers, more meticulous monitoring of food, more rigorous regulations with lower limits of quantification (LOQs) are required. The use of liquid chromatography tandem mass spectrometry (LC/MSMS) is widely recognized as the extremely sensitive and highly specific technique of choice for the determination of food contaminants at trace levels including pesticides, veterinary drugs, natural toxins, and so-called “emerging contaminants”. Our robust and reliable QSight® triple quad systems consistently deliver the throughput and productivity you need in your analytical testing lab. Our LC/MSMS solutions deliver the highest sensitivity and throughput the industry has ever seen and the capability to test for the most challenging, complex samples, including cannabis.

Immunoassays in Food Testing

As a leader in the food and feed safety testing industry, PerkinElmer develops, manufactures, and markets a wide range of test kits for the detection of antibiotics, hormones, veterinary drug residues, natural toxins, pathogens, and a variety of industrial contaminants found within the global food chain. Our goal is to provide food producers, processors, and government agencies with high quality test kits enabling compliance with global and local regulations to produce safe food for their customers. Highlights of our food and feed safety product line include: AuroFlow™ branded rapid lateral flow devices allowing customers to test for antibiotics in raw milk in 7 minutes or less, with little or no required equipment; MaxSignal® ELISA kits, including some of the most sensitive tests on the market, and offering a broad range of solutions for any customer; AOAC-approved kit for detection of histamine with as little as 15 minutes from sample to results. The Solus Pathogen Detection System provides robust and highly efficient assays for the detection of Salmonella, Listeria or E. coli O157. All assays are validated by external independent laboratories to AFNOR 16140 and/or certified by the AOAC Performance Tested Method program. With our quality management system certified to ISO 9001 standards, we strive to deliver high quality products and services in conjunction with exceptional customer service and technical support.

Atomic Absorption Spectroscopy (AA) in Food Testing

Atomic Spectroscopy (AA) is a well-established and reliable technique for the analysis of trace elements in food stuffs. With more than 50 years of experience as industry leader in Atomic Spectroscopy, PerkinElmer provides state-of-the-art instrumentation and support to food laboratories requiring excellent sensitivity, accuracy and precision in compliance with the stringent legislation to control trace elements in food products.

Choose Your Grain Solution

Quality Analysis

Brewing adjuncts method - RVA 17.04

This application describes the use of an RVA to assess the effect of added ingredients on the mashing behavior of a malt. Malts are tested with and without added enzymes, adjuncts or chemicals (e.g. pH modifiers). The differences are used to determine the improvement or deterioration in mashing behavior of the malt due to the addition.

Malt quality method - RVA 39.01

The profiles in this method are modified from the procedures of Broadhead et al. (2004), using malted barley and wheat.In studying barley malt and modified malt samples for distilling performance, Broadhead et al. (2004) used a 30-minute heating profile on the RVA to successfully identify malts.

Mash viscosity characterization method - RVA 38.01

This procedure is based on the method of Goode et al. (2005) using malted and unmalted barley, to study the effect of endogenous enzyme and added adjunct levels, respectively, on mash viscosity. This profile can be used to check the suitability of a batch of grain for mashing, or for checking the appropriate level of added adjunct in the mashing system.The RVA is used as a laboratory-scale rheological tool for the characterization of mash viscosity, allowing the brewer to monitor the processes that are taking place during mashing.

Premixed Dough Method - doughLAB 05.01

This method tempers the premixed dough to the temperature of the subsequent processing step, and rapidly measures the consistency of the dough. The method is applicable to high-water addition doughs (such as that used in bread production), and low-water addition, high-fat doughs (such as that used in biscuit/cookie production). The Premixed Dough method can be used to control the quality of the halfproduct.

High Temperature General Pasting Method - RVA 45.01

The ability of the components of a product to withstand high-temperature processing conditions is of interest to formulators, who must balance the need for acceptable product rheology with safety and throughput. The Rapid Visco Analyser (RVA) can perform high temperature tests. The method presented in this document is applicable to any liquid or hydrated ground material including, but not limited to, unmodified starches, flours, whole meals, gums, diary ingredients, and other formulations.

High Temperature Retorting Method - RVA 46.01

This high-temperature RVA method is designed to mimimc retorting, allowing assessment of the suitabilitu and stability of polysaccharide thickeners (eg. Gums, modified starches) in the formulation for high temperature processing.

Malt (kilned) method - RVA 16.04

The method is first used to establish the malting potential calibration for the variety of interest. To do this, a number of malts varying in known malting potential for the selected variety are tested. From the viscograms, the peak viscosity, time to peak, breakdown, peak area, holding strength and final viscosity are measured. These parameters are fitted as dependent variables against conventional measures of malting quality using standard regression techniques. The loge transformation may be used as appropriate. The most highly correlated viscogram parameters may subsequently be measured in malts of unknown potential for the same variety, using the regression equation to predict the potential malting quality of the sample. Good correlations using loge time to peak and loge peak area have been demonstrated.

Method for Effects of Additives to Flour Quality - doughLAB 02.01

Formulations for breads, cakes and baked products usually include a combination of additives to improve dough stability, texture and organoleptic qualities. Some of the more common additives include reducing and oxidizing agents, salt, sugar, enzymes, and emulsifiers. The effects of these additives on dough quality can be examined on the doughLAB, by comparing a sample with and without the additive. A longer test profile is used to allow for the strengthening effect of some of the additives to be fully observed.

Pregelatinized starch method - RVA 42.01

Raw starch pasting curves have a typical low initial (cold) viscosity, followed by a viscosity peak caused by swelling of the raw starch granules, and a relatively high setback viscosity. Processing by thermal and mechanical inputs will progressively reduce peak and setback viscosities. Cold viscosities will increase through a pre-gelatinization effect, and then eventually decrease through granule rupture and dextrinization, as the prior degree of cook increases. The RVA can therefore be used to assess how cooked a product is, with applications for system characterization, at-line process control, product development, scale-up, transfer, troubleshooting and assessment of competitive products.

Rice (Japanese) method - RVA 22.03

Rice sensory quality is of prime importance throughout Asia where rice is a staple food. This RVA method, developed by The Food Agency in Japan, provides a longer profile than Method 10, to better discriminate between rice samples of similar quality.

Analysis of Wheat Flour Using the DA 7250 NIR Analyzer

Flour millers need to adhere to strict quality specifications and deliver a consistent product even when incoming wheat varies. At the same time mill profitability depends on maximizing the extraction. Being able to quickly determine key characteristics in the flour is thus of great importance. DA 7250 can determine all these characteristics in seconds.

Safety Analysis

Analysis of Mycotoxins in Multi-Grain and Corn Cereals

Mycotoxins produced by fungi as toxic secondary metabolites, leave grains, maize and cereals particularly vulnerable. With this in mind, and considering that an estimated 25% of all crops show some signs of mycotoxin contamination, many countries have established regulatory guidelines for maximum mycotoxin limits in not only feed and grain, but also in processed food products.

Determination of Mycotoxins in Cereals by LC/MS/MS with Online SPE

Mycotoxins are toxic secondary metabolites produced by fungi, and are capable of causing disease and death in both humans and animals. Sample preparation is a critical step in the successful analysis of mycotoxins in food matrices. The "dilute and shoot" approach is a quick and easy way to introduce the sample into the LC/MS/MS analysis. However, due to the complexity of food matrices, this approach will often result in irreproducible matrix effects. To overcome these problems and improve sensitivity, this application note details the use of online solid phase extraction (SPE), coupled to an LC/MS/MS system for sample enrichment.

Fast Digestion Analysis of Lead and Cadmium in Rice Using Graphite Furnace Atomic Absorption

Lead (Pb) and cadmium (Cd) are common pollutants in grains and are extremely toxic. Pb is harmful to human organs even at trace levels, and once it accumulates in the body, it causes inhibition of hemoglobin formation and neurological disorders. Cd is even classified as human carcinogen [Group 1 - according to International Agency for Research on Cancer]. It is reported that Cd leads to severe kidney problems which can be fatal and is also associated with brittle bones and liver problems. Rice, as the most widely consumed cereal grain in Asia/China, can quickly pick up Pb and Cd from toxins, pesticides and fertilizers in the soil, thereby endangering the health of millions of people through their diet. Therefore, it is extremely important to develop a simple, reliable method to monitor the levels of Pb and Cd in rice. According to Chinese national standard GB 2715-2016 Hygienic Standard for Grain, the maximum concentrations of Pb or Cd in grains must be below 0.2 mg/kg; the allowable level in the European Union is the same [EC 1881/2006]. The official technique for the determination of heavy metals in both cases is graphite furnace atomic absorption spectroscopy (GFAAS, GB/T 5009. 12-2017, GB/T 5009-2017. 15 and EN 14083:2003). Samples can be pretreated using various methods, including microwave digestion, hot block digestion, dry ashing, and hot plate digestion. It is found that these conventional digestion procedures are always complicated and time-consuming (two-four hours or even longer). Plus, conventional sample preparation techniques require large quantities of corrosive and oxidizing reagents, increasing the chance for contamination which could lead to inaccurate results. Special PTFE vessels are needed for microwave digestion; however, reusable utensils might also cause cross contamination.

AuroFlow and ELISA Kits Testing for Mycotoxins and Alfatoxins in Grain

Mycotoxins are naturally occurring toxins produced by molds or fungi, most often developed due to extreme weather events. To help you detect mycotoxins and aflatoxins in grain and cereals, PerkinElmer has developed a wide range of test kits and strip tests able to perform key protective measures and ensure grains are free of harmful toxins before entering the food supply. A comprehensive brochure is available to give an overview of our best-in-class accessories that can provide you with the most reliable food safety tests and analysis.

Rapid Quantitative Tests for Mycotoxins

The AuroFlow AQ mycotoxin panel is rapid quantitative lateral flow assays designed to detect total aflatoxin (B1, B2, G1 and G2), zearalenone, fumonisin, ochratoxin a, and T-2/HT-2.

Technologies

Functional & Thermal Analysis in Food

Functional and physical testing in food is used to evaluate key properties of food products to obtain information about the quality of the food product and manufacturing process parameters that are critical for guaranteeing product consistency. PerkinElmer is a leading supplier of advanced analytical instruments and analyzers for the food and agricultural industries. Our wide range of innovative products for quality control of grain, flour, dairy, feed and food for functional analysis are unique in the industry. Our analyzers test functionality of ingredients for product development, quality and process control and quality assurance. They are placed at field and manufacturing sites, in R&D facilities, and in laboratories. These analyzers help to develop better products, reduce waste and improve efficiency every day.

Liquid Chromatography - Mass Spectrometry (LC-MS) in Food Testing

In recent years, to protect the health of consumers, more meticulous monitoring of food, more rigorous regulations with lower limits of quantification (LOQs) are required. The use of liquid chromatography tandem mass spectrometry (LC/MSMS) is widely recognized as the extremely sensitive and highly specific technique of choice for the determination of food contaminants at trace levels including pesticides, veterinary drugs, natural toxins, and so-called “emerging contaminants”. Our robust and reliable QSight® triple quad systems consistently deliver the throughput and productivity you need in your analytical testing lab. Our LC/MSMS solutions deliver the highest sensitivity and throughput the industry has ever seen and the capability to test for the most challenging, complex samples, including cannabis.

Atomic Absorption Spectroscopy (AA) in Food Testing

Atomic Spectroscopy (AA) is a well-established and reliable technique for the analysis of trace elements in food stuffs. With more than 50 years of experience as industry leader in Atomic Spectroscopy, PerkinElmer provides state-of-the-art instrumentation and support to food laboratories requiring excellent sensitivity, accuracy and precision in compliance with the stringent legislation to control trace elements in food products.

NIR - Diode Array in Food Testing

Thanks to Diode Array NIR technology, multi-constituent results are available in less than 10 seconds rather than several hours as with many traditional chemical analysis methods. During this time a large number of full spectra are collected and averaged. The analysis of full spectra makes it possible to determine complex parameters and to analyze different samples without recalibration. With the ability to analyze as often as desired with results in real-time, food processors can reduce product variations and thereby improve quality and profit.

Immunoassays in Food Testing

As a leader in the food and feed safety testing industry, PerkinElmer develops, manufactures, and markets a wide range of test kits for the detection of antibiotics, hormones, veterinary drug residues, natural toxins, pathogens, and a variety of industrial contaminants found within the global food chain. Our goal is to provide food producers, processors, and government agencies with high quality test kits enabling compliance with global and local regulations to produce safe food for their customers. Highlights of our food and feed safety product line include: AuroFlow™ branded rapid lateral flow devices allowing customers to test for antibiotics in raw milk in 7 minutes or less, with little or no required equipment; MaxSignal® ELISA kits, including some of the most sensitive tests on the market, and offering a broad range of solutions for any customer; AOAC-approved kit for detection of histamine with as little as 15 minutes from sample to results. The Solus Pathogen Detection System provides robust and highly efficient assays for the detection of Salmonella, Listeria or E. coli O157. All assays are validated by external independent laboratories to AFNOR 16140 and/or certified by the AOAC Performance Tested Method program. With our quality management system certified to ISO 9001 standards, we strive to deliver high quality products and services in conjunction with exceptional customer service and technical support.

Choose Your Contract Labs Solution

Food Quality

Determination of Sugar as Glucose in a Soft Drink Using the LAMBDA PDA UV/Vis Spectrophotometer

In this application note, the amount of sugar or carbohydrate in a soft drink was determined using a colorimetric method. The rapid measurement of the PDA (Photodiode Array) UV/Vis Spectrophotometer allows for the collection of accurate data from the time-dependent reaction. The calibration curve was automatically calculated using the Quantification mode of the UV Lab™ software.

Analysis of Micronutrients in Fruit Juice Using the Avio 200 ICP-OES

For food manufacturers and processors, it is important to be able to quantify the content of food products, including micronutrients, for both safety and quality reasons along with regulatory label-claim requirements, and ICP-OES is generally favored in a multi-element analytical environment with detection capabilities appropriate for nutritional analysis. This work focuses on the analysis of micronutrients in a variety of commercial juice products using PerkinElmer's Avio® 200 hybrid-scanning ICP-OES with sample preparation performed using a PerkinElmer Titan MPS™ Microwave Sample Preparation System.

Analysis of Micronutrients in Milk by Flame AA Using FAST Flame Sample Automation for Increased Sample Throughput

This work demonstrates the ability to accurately measure nutritional elements in a variety of milk types by flame atomic absorption using FAST Flame sample automation for high sample throughput.

Practical Food Applications of Differential Scanning Calorimetry (Dsc)

This note describes a number of important food applications utilising the PerkinElmer DSC demonstrating the versatility of the technique as a tool in the food industry.

Food Safety

Direct Analysis of Glyphosate in Wine with No Sample Preparation

Glyphosate is an organophosphate herbicide that is used on crops to kill weeds and grasses. We present a study that involves direct analysis of glyphosate in wine on a mixed mode column with no sample dilution or extraction using a PerkinElmer QSight® 220 triple quadruple mass spectrometer with a patented StayClean™ source, consisting of a hot surface induced desolvation (HSID)™ interface and a Laminar Flow Ion Guide™. Both the HSID and ion guide prevent any contaminants from entering the mass spectrometer, keeping it at its highest performance level and, thereby, maintenance free.

"No Dilute” Just Shoot: Robustness of a QSight LC-ESI-MS/MS for Pesticide Residue Analysis in Wine

QSight LC/MS/MS evaluates eliminating sample preparation for trace level pesticide in wine

Pesticide in Grapes by LC-MS/MS

The Grape crop is one of the most important fruit crops consumed in the world. Grapes are consumed both as fresh and as processed products, such as wine, jam, juice, jelly, grape seed extract, raisins, vinegar and grape seed oil. A large variety of pesticides are used in grape production throughout its growing season to control pests and diseases in vineyards and to increase crop yield. Pesticide residue is a major concern for the stakeholders of the grape industry, due to more and more stringent regulations and safety standards in most countries.

Estimation of 136 pesticide residue in Black Pepper using QuEChERS extraction technique and QSight™ LC-MS/MS

It is very well known that Black pepper is a complex matrix that requires a proper extraction and clean-up method for interferences. In this study, a fast, sensitive and selective multi-residue method has been developed for analysis of over 136 pesticides in Pepper samples by coupling a modified QuEChERS extraction method with LC/MS/MS. Using time-managed- MRM™ in the QSight™ triple quadrupole mass spectrometer, the optimum dwell time of multiple MRM transitions can be generated automatically for the targeted analytes. This not only saves time in method development but also improves data quality and analytical performance of instrument.

Technologies

UV/Vis Spectroscopy in Food Testing

Uv/Vis Spectroscopy is an important, flexible, simple and widespread analytical method largely used in the food industry for quality control of food and beverages as it allows the identification of origin and the detection of adulteration, among other key important characteristics in food products From compact, mobile, ultraviolet instruments to high-performance bench-top systems, we have the solution for every laboratory need.

Liquid Chromatography - Mass Spectrometry (LC-MS) in Food Testing

In recent years, to protect the health of consumers, more meticulous monitoring of food, more rigorous regulations with lower limits of quantification (LOQs) are required. The use of liquid chromatography tandem mass spectrometry (LC/MSMS) is widely recognized as the extremely sensitive and highly specific technique of choice for the determination of food contaminants at trace levels including pesticides, veterinary drugs, natural toxins, and so-called “emerging contaminants”. Our robust and reliable QSight® triple quad systems consistently deliver the throughput and productivity you need in your analytical testing lab. Our LC/MSMS solutions deliver the highest sensitivity and throughput the industry has ever seen and the capability to test for the most challenging, complex samples, including cannabis.

Atomic Absorption Spectroscopy (AA) in Food Testing

Atomic Spectroscopy (AA) is a well-established and reliable technique for the analysis of trace elements in food stuffs. With more than 50 years of experience as industry leader in Atomic Spectroscopy, PerkinElmer provides state-of-the-art instrumentation and support to food laboratories requiring excellent sensitivity, accuracy and precision in compliance with the stringent legislation to control trace elements in food products.

Functional & Thermal Analysis in Food

Functional and physical testing in food is used to evaluate key properties of food products to obtain information about the quality of the food product and manufacturing process parameters that are critical for guaranteeing product consistency. PerkinElmer is a leading supplier of advanced analytical instruments and analyzers for the food and agricultural industries. Our wide range of innovative products for quality control of grain, flour, dairy, feed and food for functional analysis are unique in the industry. Our analyzers test functionality of ingredients for product development, quality and process control and quality assurance. They are placed at field and manufacturing sites, in R&D facilities, and in laboratories. These analyzers help to develop better products, reduce waste and improve efficiency every day.

Choose Your Contract Labs Solution

Food Quality

Butter - DA 7250

Analysis of fat, moisture and salt is of great importance to butter plants. By accurately controlling these constituents the producer can experience significant savings. Using the DA 7250, production staff can perform their own analysis 24/7 and have instant access to the results. The results can be used for process optimization and to avoid costly mistakes and potential penalties.

Sweetened Condensed Milk - DA 7250

Sweetened Condensed Milk (SCM) is an important ingredient for many products. The total solids, fat, and sucrose quantities are key to proper performance as an ingredient. Correct quantities impart both functional and flavor characteristics. The DA 7250 NIR analyzer can provide precise, repeatable and representative results in seconds.

Rice bran - DA 7250

Rice bran is a by-product of the rice millng process, and is an important ingredient in many animal feeds. As such, its nutritional content is of high importance, and rapid analysis of parameters such as moisture, oil and protein are great benefit to rice processors as well as feed producers. Tis application demonstrates how the DA 7250 can analyze rice bran in a few seconds using large open rotating sample dishes.

Analysis of Ruminant Feed Using the DA 7250 Feed Analyzer

Animal performance and milling cost are dictated by nutritional requirements. Feed producers must have full knowledge of the nutritional value of raw materials and finished products. The DA 7250 Feed Analyzer can analyze the aforementioned parameters in ruminant feed accurately in 6 seconds. The calibrations can be used on any DA 7250 instrument, for many different product types/formulations, andwithout any grinding of samples.

Soymeal - DA 7250

For soybean processors knowledge of the soymeal composition provides valuable information for process control. For feed producers it is vital to have full control over the nutritional value of raw materials, especially important ones such as soymeal. DA 7250 Near Infrared Reflactance (NIR) shows excellent results without sample preparation.

Rye - DA 7250

For rye processors, moisture, protein, starch, ash, NDF and fiber are important parameters that define the properties of the end product. Rapid and accurate determination of these parameters is of great benefit both in controlling the rye processing and the end product. This application note shows that the DA 7250 Near Infrared Reflectance (NIR) can accurately analyze rye in a few seconds.

Petfood, wet - DA 7250

When producing petfood it is critical to maintain productquality at the same time as production costs are controlled.This requires rapid and accurate analysis of key quality parameters such as moisture,protein and fat. The Near Infrared Reflectance (NIR) technique is particularly suited for measurements of these parameters. DA 7250 can perform a multi-component analysis in only 6 seconds with no sample grading or sampe preparation required.

Fishmeal - DA 7250

Fish meal is an important source of protein and other nutrients, used in feed and pet food production. Rapid compositional testing is of paramount importance. The Near Infrared Reflectance (NIR) technology is highly suitable for these purposes. The DA 7250 uses novel Diode Array NIR technology and performs a multi-component analysis in less than 10 seconds.

Analysis of Meat and Meat Products using the DA 7250 NIR Analyzer

For meat processors and producers of meat products it is critical to be able to monitor and control key nutritional parameters such as fat, moisture, protein, collagen and salt. With Near Infrared (NIR) technology multi-constituent results are available in seconds rather than several hours as with many traditional chemical analysis methods. NIR instrument usage provide great values in production of mechanically separated poultry, ground meats, sausage and other meat products.

Analysis of Raw Meat By-Products using the DA 7250 NIR Analyzer

For meat processors and users of meat by-products, such as pet food producers, it is important to rapidly test samples for protein and other nutritional contents.The Near Infrared Reflectance (NIR) technology is highly suitable for these purposes. The DA 7250 uses novel Diode Array NIR technology and performs a multi-component analysis in less than 10 seconds. During this time a large number of full spectra are collected and averaged.

Food Safety

Pesticide Residues and Illegal Additives in Wine

Both pesticides and illegal additives, if present in significant levels in wine, can pose health risk to consumers. In this study, a simple and sensitive LC-MS/MS method has been developed and applied for the determination of both pesticides and pigments in a single analytical run.

Pesticide in Grapes by LC-MS/MS

The Grape crop is one of the most important fruit crops consumed in the world. Grapes are consumed both as fresh and as processed products, such as wine, jam, juice, jelly, grape seed extract, raisins, vinegar and grape seed oil. A large variety of pesticides are used in grape production throughout its growing season to control pests and diseases in vineyards and to increase crop yield. Pesticide residue is a major concern for the stakeholders of the grape industry, due to more and more stringent regulations and safety standards in most countries.

A Single Cannabis Method to Meet California Pesticide and Mycotoxin Residues Regulatory Requirements

Testing for the levels of pesticide and mycotoxins in cannabis is important to ensure consumer safety and quality control. In this work, the PerkinElmer application development team analyzed all 66 pesticides (including very hydrophobic and chlorinated pesticides typically analyzed by GC-MS/MS) and five mycotoxins spiked in cannabis flower extracts well below the action limits specified by the state of California. A LC-MS/MS instrument was used with ESI and APCI sources and a simple solvent extraction method with excellent recoveries for all analytes in acceptable range of 70-120%.

Analysis of Pesticide Residues in Cannabis Regulated by Oregon State Using LC/MS/MS

Liquid chromatography-tandem mass spectrometry (LC/MS/MS) has become the method of choice for pesticide. The state of Oregon has issued regulatory limits for 59 pesticide residues in both cannabis flower and concentrates, while other states have come up with their own lists of pesticide residues relating to medical marijuana and cannabis testing.

Analysis of Target Pesticide Residues in Berries with LC/MS/MS Coupled with a QuEChERS Sample Prep

Analysis of target pesticide residues in berries using a unique laminar flow UHPLC-ESI-MS/MS

Estimation of 136 pesticide residue in Black Pepper using QuEChERS extraction technique and QSight™ LC-MS/MS

It is very well known that Black pepper is a complex matrix that requires a proper extraction and clean-up method for interferences. In this study, a fast, sensitive and selective multi-residue method has been developed for analysis of over 136 pesticides in Pepper samples by coupling a modified QuEChERS extraction method with LC/MS/MS. Using time-managed- MRM™ in the QSight™ triple quadrupole mass spectrometer, the optimum dwell time of multiple MRM transitions can be generated automatically for the targeted analytes. This not only saves time in method development but also improves data quality and analytical performance of instrument.

A Multiclass Multiresidue Method for Analysis of Veterinary Drugs in Chicken by UHPLC/MS/MS

Veterinary drugs are used in animal production to treat diseases, prevent infection and protect growth of animals, which helps provide quality marketplace. However the uncontrolled use may cause heavy human disease so regulatory agencies around the world have established maximum residue levels (MRLs) or tolerances of veterinary drugs in foods. Drug analysis is generally challenging, due to the complexity of sample matrices and diversity of analytes from various classes of chemical properties. In this study, a fast, sensitive and selective method has been developed for analysis of 73 veterinary drugs (covering 13 different chemical classes) in chicken samples by coupling solvent extraction method with LC/MS/MS.

Determination of Arsenic Speciation in Apple Juice by HPLC/ICP-MS Using the NexION 300/350

This work has demonstrates a simple, rugged, fast method for arsenic (As) speciation in apple juice samples. To further validate the method, the analyses were repeated over multiple days on different instruments with columns from different lots.

Technologies

NIR - Diode Array in Food Testing

Thanks to Diode Array NIR technology, multi-constituent results are available in less than 10 seconds rather than several hours as with many traditional chemical analysis methods. During this time a large number of full spectra are collected and averaged. The analysis of full spectra makes it possible to determine complex parameters and to analyze different samples without recalibration. With the ability to analyze as often as desired with results in real-time, food processors can reduce product variations and thereby improve quality and profit.

Liquid Chromatography - Mass Spectrometry (LC-MS) in Food Testing

In recent years, to protect the health of consumers, more meticulous monitoring of food, more rigorous regulations with lower limits of quantification (LOQs) are required. The use of liquid chromatography tandem mass spectrometry (LC/MSMS) is widely recognized as the extremely sensitive and highly specific technique of choice for the determination of food contaminants at trace levels including pesticides, veterinary drugs, natural toxins, and so-called “emerging contaminants”. Our robust and reliable QSight® triple quad systems consistently deliver the throughput and productivity you need in your analytical testing lab. Our LC/MSMS solutions deliver the highest sensitivity and throughput the industry has ever seen and the capability to test for the most challenging, complex samples, including cannabis.

Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) in Food Testing

Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) allows the analysis of a variety of food samples accurately for elements present at both trace and nutritional levels during the same analysis. PerkinElmer has been at the forefront of ICP-MS technology – from the very first commercial ICP-MS back in 1983 to the first instrument bringing together the detection limits of a true reaction cell and the simplicity of a collision cell in 2010, and most recently, the industry’s first four-quadrupole system – nearly four decades of patents, innovations, and accolades.

Choose Your Contract Labs Solution

Quality

Elemental Analysis of Meat and Seafood with the NexION 300/350 ICP-MS

This work focuses on the elemental analysis of meat and seafood - foods such as these are high in protein content which is important for body growth and repair.

The Analysis of Copper, Iron, and Manganese in Wine with FAST Flame Atomic Absorption

This work demonstrates the ability of the PinAAcle 900 flame AA spectrometer to measure Cu, Fe, and Mn in wines to comply with Chinese wine import regulations coupled with FAST Flame sample automation for increased throughput.

The determination of residual lactose in lactose reduced milk by Lactoscope FTIR advanced

Method for the determination of residual lactose in milk by Lactoscope FTA .

Analysis of Water-Soluble Vitamins in Infant Formula by UHPLC-MS MS

Water-soluble vitamins (WSV), comprised primarily of the vitamin B complex, are essential ingredients in many foods, particularly in infant formulas. When analyzing fortified foods, this can be particularly challenging due to the wide range in concentration of vitamins, in keeping with daily allowances. This application note presents a LC-MS/MS method for the efficient, routine and robust chromatographic analysis of B-vitamins in infant formula. Eight water soluble vitamins over a wide concentration range were identified and quantified in under four minutes. The results showed excellent retention time repeatability and the method was able to detect vitamin B12 at 0.5 ppb, well below the expected level of ~2 ppb in infant formulas.

Tobacco, cut filler - DA 7250

For cigarette producers it is critical to be able to monitor and control key parameters such as oven moisture, sugar, nicotine, menthol and more. The DA 72cigarette plants.50 can analyze many samples of tobacco a day in nearly real time. The ease-of-use and accuracy make it ideal for use at

Safety

Analysis of Multi-Residue Pesticides in Rice by LC/MS/MS

Liquid chromatography tandem mass spectrometry (LC/MS/MS) has become the method of choice for pesticide analysis due to its high selectivity and sensitivity as well as its suitability for a wide range of compounds in various sample matrices. 0 In this study, a fast, sensitive and selective multi- residue method has been developed for analysis of over 200 pesticides in rice samples by coupling a modified QuEChERS extraction method with LC/MS/MS. Using time-managed- MRM™ in the QSight® triple quadrupole mass spectrometer, the optimum dwell time of multiple MRM transitions can be generated automatically for the targeted analytes. This not only saves time in method development but also improves data quality and analytical performance, as demonstrated in this study by the results of multi- residue pesticide analysis in rice samples.

Direct Analysis of Glyphosate and Similar Polar Pesticides in Oatmeal by UHPLC-MS/MS

Analysis of glyphosate and similiar polar pesticides in oatmeal using the PerkinElmer QSight LCMSMS.

Pesticide Residues Analysis by Clarus GC

This Application Note talks about pesticide residues analysis tested by Clarus 690 Gas Chromatograph

Analysis of Aflatoxins by UHPLC

Aflatoxin B1 is considered to be the most genotoxic of the mycotoxins, and, when ingested by cows, is converted to aflatoxin M1 which has been shown to cause liver cancer in certain animals.

Analysis of Mycotoxins in Multi-Grain and Corn Cereals

Mycotoxins produced by fungi as toxic secondary metabolites, leave grains, maize and cereals particularly vulnerable. With this in mind, and considering that an estimated 25% of all crops show some signs of mycotoxin contamination, many countries have established regulatory guidelines for maximum mycotoxin limits in not only feed and grain, but also in processed food products.

Determination of Mycotoxins in Cereals by LC/MS/MS with Online SPE

Mycotoxins are toxic secondary metabolites produced by fungi, and are capable of causing disease and death in both humans and animals. Sample preparation is a critical step in the successful analysis of mycotoxins in food matrices. The "dilute and shoot" approach is a quick and easy way to introduce the sample into the LC/MS/MS analysis. However, due to the complexity of food matrices, this approach will often result in irreproducible matrix effects. To overcome these problems and improve sensitivity, this application note details the use of online solid phase extraction (SPE), coupled to an LC/MS/MS system for sample enrichment.

AuroFlow PR1ME BT Combo MRL Assay

The AuroFlow™ PR1ME™ BT Combo MRL Assay is able to detect 14 beta-lactam antibiotics under the European MRL levels, as well as the metabolites of ceftiofur and cephaprin below MRL levels. The assay can detect all 3 regulated tetracycline antibiotics under the European MRL.The validation results indicate that the AuroFlow™ PR1ME™ BT Combo MRL Assay is appropriate for use as a screening test for beta-lactams and tetracyclines in raw commingled cow’s milk.

Fast Digestion Analysis of Lead and Cadmium in Rice Using GFAAS with Deuterium Background Correction

Toxic elements, such as lead (Pb) and cadmium (Cd), are entering the food chain through environmental contamination. Rice, as the most widely consumed cereal grain in Asia, can quickly pick up Pb and Cd from soil, thereby seriously endangering human health through diet. These toxic element levels need to be carefully monitored. Maximum levels of Pb and Cd are strictly regulated in Asian countries, especially in China; therefore, it is extremely important to develop a simple, reliable method for trace levels of Pb and Cd in rice. The allowable maximum levels of Pb and Cd in grains in EU and China are required to be below 0.2 mg/kg (Commission Regulation EC 1881/2006 and Chinese GB 2715-2016 Hygienic Standard). Graphite furnace atomic absorption spectroscopy (GFAAS) is the officially recommended technique for detection of trace elements in various food stuffs (GB/T 5009.15-2017, GB/T 5009. 12-2017 and EN 14083:2003). Food samples are usually pretreated before GFAAS analysis using various methods: microwave digestion, hot block digestion, dry ashing, and hot plate digestion. These conventional digestion procedures are usually complicated and time-consuming (2-4 hours or longer). Plus, they require large quantities of corrosive and oxidizing reagents, increasing the chance for contamination which could lead to inaccurate results. However, fast digestion can effectively speed up the sample preparation procedure while reducing the use of corrosive reagents and the chance for contamination.

The Elemental Analysis of Grains with the NexION 300/350 ICP-MS

Trace elemental analysis of grains can provide associations between air pollution sources and soil variables. The elemental capabilities and dynamic range of inductively coupled plasma mass spectrometry (ICP-MS) make it ideally suited for the analysis of food materials. The ultratrace detection limits of ICP-MS permit the determination of low-level contaminants, such as Pb, As, Se, and Hg, while the macro-level nutritional elements, such as Ca, Mg, K, and Na, can be quantified usingthe extended dynamic range capability of ICP-MS which provides the ability to measure concentrations over nine orders of magnitude.

Determination of Sulfonamides in Honey

In apiculture, sulfonamides are the most commonly used antibiotics to treat American and European Foulbrood, a type of disease that infects bees. This application note demonstrates how QSight 200 System can provides a very sensitive and robust platform for the analysis of sulfonamides in honey.

Technologies

Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) in Food Testing

Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) allows the analysis of a variety of food samples accurately for elements present at both trace and nutritional levels during the same analysis. PerkinElmer has been at the forefront of ICP-MS technology – from the very first commercial ICP-MS back in 1983 to the first instrument bringing together the detection limits of a true reaction cell and the simplicity of a collision cell in 2010, and most recently, the industry’s first four-quadrupole system – nearly four decades of patents, innovations, and accolades.

Atomic Absorption Spectroscopy (AA) in Food Testing

Atomic Spectroscopy (AA) is a well-established and reliable technique for the analysis of trace elements in food stuffs. With more than 50 years of experience as industry leader in Atomic Spectroscopy, PerkinElmer provides state-of-the-art instrumentation and support to food laboratories requiring excellent sensitivity, accuracy and precision in compliance with the stringent legislation to control trace elements in food products.

Dedicated IR Milk Analyzer

A state-of-the art FT-IR (Fourier- Transform Infrared Spectroscopy) instrument with modern optics and simple to use but powerful software enables the LactoScope to test raw, standardized and processed milks, whey, cream and other dairy products. The instrument incorporates the latest mid-infrared (MIR) technology for quick measuring time of 30-45 seconds with a typical accuracy of under 1% CV. The instrument's modular construction minimizes the vibration of the FT-IR bench, and its integrated design provides efficient use of laboratory space. The LactoScope has a low cost of ownership, minimum downtime, and worldwide support for all its users.

Liquid Chromatography - Mass Spectrometry (LC-MS) in Food Testing

In recent years, to protect the health of consumers, more meticulous monitoring of food, more rigorous regulations with lower limits of quantification (LOQs) are required. The use of liquid chromatography tandem mass spectrometry (LC/MSMS) is widely recognized as the extremely sensitive and highly specific technique of choice for the determination of food contaminants at trace levels including pesticides, veterinary drugs, natural toxins, and so-called “emerging contaminants”. Our robust and reliable QSight® triple quad systems consistently deliver the throughput and productivity you need in your analytical testing lab. Our LC/MSMS solutions deliver the highest sensitivity and throughput the industry has ever seen and the capability to test for the most challenging, complex samples, including cannabis.

NIR - Diode Array in Food Testing

Thanks to Diode Array NIR technology, multi-constituent results are available in less than 10 seconds rather than several hours as with many traditional chemical analysis methods. During this time a large number of full spectra are collected and averaged. The analysis of full spectra makes it possible to determine complex parameters and to analyze different samples without recalibration. With the ability to analyze as often as desired with results in real-time, food processors can reduce product variations and thereby improve quality and profit.

Immunoassays in Food Testing

As a leader in the food and feed safety testing industry, PerkinElmer develops, manufactures, and markets a wide range of test kits for the detection of antibiotics, hormones, veterinary drug residues, natural toxins, pathogens, and a variety of industrial contaminants found within the global food chain. Our goal is to provide food producers, processors, and government agencies with high quality test kits enabling compliance with global and local regulations to produce safe food for their customers. Highlights of our food and feed safety product line include: AuroFlow™ branded rapid lateral flow devices allowing customers to test for antibiotics in raw milk in 7 minutes or less, with little or no required equipment; MaxSignal® ELISA kits, including some of the most sensitive tests on the market, and offering a broad range of solutions for any customer; AOAC-approved kit for detection of histamine with as little as 15 minutes from sample to results. The Solus Pathogen Detection System provides robust and highly efficient assays for the detection of Salmonella, Listeria or E. coli O157. All assays are validated by external independent laboratories to AFNOR 16140 and/or certified by the AOAC Performance Tested Method program. With our quality management system certified to ISO 9001 standards, we strive to deliver high quality products and services in conjunction with exceptional customer service and technical support.

Gas Chromatography - Mass Spectrometry (GC-MS) in Food Testing

Gas Chromatography – Mass Spectrometry (GC-MS) is a widely used technique for qualitative and quantitative analysis of food composition, food additives, flavor and aroma components and contaminants such as pesticides, natural toxins, veterinary drugs and packaging material. Our portfolio of GC/MS solutions is designed to empower your science and ensure you receive accurate, reliable results – every time.

Choose Your Contract Labs Solution

Quality

Cheese - DA 7250

Analysis of moisture, fat, protein, salt and pH is of great importance to cheese plants. By accurately controlling these constituents, the producer can experience significant savings and ensure product quality. The availability of fast results allows for process optimization and to avoid costly mistakes and potential penalties. The DA 7250 NIR analyzer can analyze cheese for moisture, fat, salt, protein and pH with high accuracy in only 6 seconds.

Analysis of Moisture, Protein, Fiber, Oil and Free Fatty Acids in Soybeans Using the DA 7250

For soybean processors it is important to have full knowledge of the quality of the soybean they purchase, as its value to a high degree depends on the composition of, for example, oil and protein. For seed breeders, the fatty acid profile is also critical as there are increasing demmand for varieties with specific characteristics. The DA 7250 Near Infrared Reflactance (NIR) can perform the multicomponent analysis in seconds.

Analysis of Dry Peas for Moisture, Protein, Ash and Starch

Accurate monitoring of moisture, protein, ash and starch content of dry peas is important for quality control and cost monitoring. Since dry peas are a bulk commodity, there is a need to analyze many samples quickly. Reference methods of analysis – particularly the analysis of starch – are time consuming, error prone, and require trained lab technicians. In all instances, cost savings are dependent both upon the accuracy of the analyses and the availability of real-time results. Using the DA 7250 at-line NIR, operation staff can perform their own analysis 24/7 and have instant access to the results. The results can be used for binning, blending, process optimization, quality control and prevention of costly mistakes.

Analysis of Wheat Flour Using the DA 7250 NIR Analyzer

Flour millers need to adhere to strict quality specifications and deliver a consistent product even when incoming wheat varies. At the same time mill profitability depends on maximizing the extraction. Being able to quickly determine key characteristics in the flour is thus of great importance. DA 7250 can determine all these characteristics in seconds.

Analysis of Ruminant Feed Using the DA 7250 Feed Analyzer

Animal performance and milling cost are dictated by nutritional requirements. Feed producers must have full knowledge of the nutritional value of raw materials and finished products. The DA 7250 Feed Analyzer can analyze the aforementioned parameters in ruminant feed accurately in 6 seconds. The calibrations can be used on any DA 7250 instrument, for many different product types/formulations, andwithout any grinding of samples.

Safety

A Single Cannabis Method to Meet California Pesticide and Mycotoxin Residues Regulatory Requirements

Testing for the levels of pesticide and mycotoxins in cannabis is important to ensure consumer safety and quality control. In this work, the PerkinElmer application development team analyzed all 66 pesticides (including very hydrophobic and chlorinated pesticides typically analyzed by GC-MS/MS) and five mycotoxins spiked in cannabis flower extracts well below the action limits specified by the state of California. A LC-MS/MS instrument was used with ESI and APCI sources and a simple solvent extraction method with excellent recoveries for all analytes in acceptable range of 70-120%.

A Method for the Quantification of Ethanol Content in Consumable Fruit Juices by Headspace Injection

A new application has been developed in the accurate determination of ethanol content in samples of these products utilizing the PerkinElmer® TurboMatrix™ headspace (HS) autosampler for better reproducible results. Additionally, since ethanol is the only desired peak, this method allows for a quick run time giving users the opportunity to analyze high volume throughput samples multiple times. The main focus of this method is intended toward fruit juices and it is confirmed to give accurate results amongst a wide range of store bought juices. This application note outlines the principles and technology of this method in the analysis and quantification of ethanol in consumable juices.

Technologies

NIR - Diode Array in Food Testing

Thanks to Diode Array NIR technology, multi-constituent results are available in less than 10 seconds rather than several hours as with many traditional chemical analysis methods. During this time a large number of full spectra are collected and averaged. The analysis of full spectra makes it possible to determine complex parameters and to analyze different samples without recalibration. With the ability to analyze as often as desired with results in real-time, food processors can reduce product variations and thereby improve quality and profit.

Liquid Chromatography - Mass Spectrometry (LC-MS) in Food Testing

In recent years, to protect the health of consumers, more meticulous monitoring of food, more rigorous regulations with lower limits of quantification (LOQs) are required. The use of liquid chromatography tandem mass spectrometry (LC/MSMS) is widely recognized as the extremely sensitive and highly specific technique of choice for the determination of food contaminants at trace levels including pesticides, veterinary drugs, natural toxins, and so-called “emerging contaminants”. Our robust and reliable QSight® triple quad systems consistently deliver the throughput and productivity you need in your analytical testing lab. Our LC/MSMS solutions deliver the highest sensitivity and throughput the industry has ever seen and the capability to test for the most challenging, complex samples, including cannabis.

Gas Chromatography (GC) in Food Testing

Better GC for the most critical applications We offer industry-leading chromatographic solutions to help ensure the quality and safety of food supplies around the world. GC for food quality applications helps food processors to characterize flavor and fragrance profile of finished goods to meet consumers demands. For food safety, we enable the detection of harmful contaminants and pesticides to help ensure compliance with global regulations to protect human health.

Choose Your Meat & Seafood Solution

Quality

Analysis of Pork Adulterated Meat

A selective and sensitive LC/MS/MS method for fast identification and analysis of meat samples using three peptides specific for pork as biomarkers. . The optimized sample preparation procedure is easy to follow and can be used for analyzing raw, cooked and processed meat products. This method can selectively detect peptides from pork meat species at a threshold detection limit of 1% w/w (10 mg/g) in a variety of food products and thus the method can be useful for analysis of Halal food (or pork related food products) samples.

A Multiclass Multiresidue Method for Analysis of Veterinary Drugs in Chicken by UHPLC/MS/MS

Veterinary drugs are used in animal production to treat diseases, prevent infection and protect growth of animals, which helps provide quality marketplace. However the uncontrolled use may cause heavy human disease so regulatory agencies around the world have established maximum residue levels (MRLs) or tolerances of veterinary drugs in foods. Drug analysis is generally challenging, due to the complexity of sample matrices and diversity of analytes from various classes of chemical properties. In this study, a fast, sensitive and selective method has been developed for analysis of 73 veterinary drugs (covering 13 different chemical classes) in chicken samples by coupling solvent extraction method with LC/MS/MS.

Determination of Thirteen Beta Agonists in Pork Using UHPLC - Tandem Mass Spectrometry

Beta-adrenergic receptor agonists (ß- agonists) are synthetic drugs utilized in the treatment of conditions such as asthma in humans, and are also used as a growth-promoting agent in food-producing animals. The use of ß- agonists in food-producing livestock has been either banned or regulated across many countries owing to human health concerns. To aid in the monitoring and detection of ß- agonists in livestock, a highly sensitive and selective analytical method has been developed, and is presented in this study. This LC/MS/MS method details the analysis of 13 ß- agonists in pork samples, and utilizes isotopically-labeled internal standards to compensate for matrix effects present in complex food matrices.

Safety

High Throughput Screening Solutions for Nitrofurans and Chloramphenicol in Shrimp Samples

The use of nitrofurans, a class of broad-spectrum antibiotics widely used in the aquaculture industry and their metabolites, has been regulated by everal countries and organizations across the world for their ahrmful effects on human health. ELISA assays are widely used for the detection of nitrofuran metabolites and chloramphenicol for regulatory conformance owing to the high sensitivity, selectivity and ease of use of the method. In this study, we demonstrate the accuracy and precision (CCß validation study) of the simultaneous 5-in-1 sample extraction method by manual ELISA and DS2 automation methods. Sensitivityof the assay kits (LOD) was also demonstrated using manual and DS2 method. Finally, sample variability testing was performed to characterize the effects of matrix from various shrimp sources.

Determination of 24 Polycyclic Aromatic Hydrocarbons in Smoked Meat by ASE Extraction-GPC Purification Coupled with GC/MS

Polycyclic aromatic hydrocarbons (PAHs), a class of complex compounds containing two or more benzene rings, are widely found in the environment and food. PAHs are formed during the incomplete combustion of organic matter, such as wood utilized in cooking and food preparation. They have attracted wide attention due to studies which have shown the teratogenicity and carcinogenicity of PAH compounds. For humans, food intake is one of the main sources of PAH exposure, and can be the result of contamination from anthropogenic sources, food processing or cooking practices. In this paper, a validated method employing accelerated solvent extraction (ASE) and gel permeation chromatography (GPC), followed by solid phase extraction (SPE) on silica and analytical determination by GC/MS was applied for the detection of PAHs in smoked meat. The results demonstrate that the method is suitable for the simultaneous determination of 24 PAHs in smoked meat with good efficiency, accuracy and reproducibility.

MaxSignal Ractopamine ELISA Verification Report

Ractopamine has been banned for use as a livestock growth promoter in many regions and countries including Europe and China. To prevent ractopamine residues from entering the food chain, both producers and government surveillance agencies need technologies and methods that can provide rapid, accurate and reliable detection at specific sensitivities. MaxSignal® Ractopamine ELISA Kit enables government agencies, food manufacturers, as well as quality assurance organizations, to detect ractopamine as low as 0.1 ng/g or 0.1 ppb in a variety of sample types. In the current study, an improved sample preparation protocol was developed and validated for swine feed.

Determination of Polycyclic Aromatic Hydrocarbons in Seafood by UHPLC- MS/MS

Polycyclic aromatic hydrocarbons (PAHs) can contaminate foods during smoking, heating, and drying processes that allow combustion products to come into direct contact with food. They can also enter food supply chains through contaminated air and water, and accumulate in various food chains. Regulations are in place to monitor PAHs levels in foods; the EU set a stringent maximum residue limit (MRL) for BaP in muscle meat of smoked fish and smoked fishery products at 2 µg/kg.2 In this study, seafood samples were prepared using a QueChERS extraction method followed by a dispersive solid-phase extraction clean-up step. The samples were subsequently analyzed by coupling a UHPLC system with a triple quadrupole mass spectrometer.

Technology

MaxSignal ELISA Kits

An ELISA or Enzyme Linked Immuno-Sorbent Assay allows for the rapid screening and quantitation of analytes against a variety of materials. We offer a wide range of ELISA kits to measure the safety of dairy, meat, poultry, seafood, grain, feed, and honey. ELISAs involve at least one antibody with specificity for a particular analyte or antigen and consist of the following basic protocol: Liquid sample containing the target analyte is added to a microwell that is pre-coated with analyte-specific antibodies. Any target analyte in the sample binds to the antibodies. An enzyme-linked antibody or antigen is added to the microwell, also binding to the analyte specific antibodies coated to the microwell. A substrate is added which changes its color as it interacts with the enzymes linked to the analytes or antibodies. The color change is measured with a spectrophotometer. Quantitation of the analyte is determined by comparing the test sample results against a standard curve of known analyte concentrations.

Gas Chromatography - Mass Spectrometry (GC-MS) in Food Testing

Gas Chromatography – Mass Spectrometry (GC-MS) is a widely used technique for qualitative and quantitative analysis of food composition, food additives, flavor and aroma components and contaminants such as pesticides, natural toxins, veterinary drugs and packaging material. Our portfolio of GC/MS solutions is designed to empower your science and ensure you receive accurate, reliable results – every time.

Liquid Chromatography - Mass Spectrometry (LC-MS) in Food Testing

In recent years, to protect the health of consumers, more meticulous monitoring of food, more rigorous regulations with lower limits of quantification (LOQs) are required. The use of liquid chromatography tandem mass spectrometry (LC/MSMS) is widely recognized as the extremely sensitive and highly specific technique of choice for the determination of food contaminants at trace levels including pesticides, veterinary drugs, natural toxins, and so-called “emerging contaminants”. Our robust and reliable QSight® triple quad systems consistently deliver the throughput and productivity you need in your analytical testing lab. Our LC/MSMS solutions deliver the highest sensitivity and throughput the industry has ever seen and the capability to test for the most challenging, complex samples, including cannabis.

Choose Your Meat & Seafood Solution

Quality

Determination of 24 Polycyclic Aromatic Hydrocarbons in Smoked Meat by ASE Extraction-GPC Purification Coupled with GC/MS

Polycyclic aromatic hydrocarbons (PAHs), a class of complex compounds containing two or more benzene rings, are widely found in the environment and food. PAHs are formed during the incomplete combustion of organic matter, such as wood utilized in cooking and food preparation. They have attracted wide attention due to studies which have shown the teratogenicity and carcinogenicity of PAH compounds. For humans, food intake is one of the main sources of PAH exposure, and can be the result of contamination from anthropogenic sources, food processing or cooking practices. In this paper, a validated method employing accelerated solvent extraction (ASE) and gel permeation chromatography (GPC), followed by solid phase extraction (SPE) on silica and analytical determination by GC/MS was applied for the detection of PAHs in smoked meat. The results demonstrate that the method is suitable for the simultaneous determination of 24 PAHs in smoked meat with good efficiency, accuracy and reproducibility.

Meat and Seafood Testing Solutions

Food testing labs like yours are constantly challenged with accurately analyzing samples quickly and efficiently - all while striving to reduce costs due to market forces. Your commitment to ensuring meat and seafood are safe for consumption, as demand increases, is an uphill battle. Our commitment to you: to provide a range of solutions across multiple technologies, products, and services that meets or exceeds the testing needs of food processors. Our solutions offer more efficiency and increased accuracy and sensitivity for better yields in real time with minimal training. From instrumentation and software to consumables and reagents to service and support, we are dedicated to providing you with end-to-end solutions that ease your everyday challenges of automation, throughput, service, and time to results.

Safety

Determination of 24 Polycyclic Aromatic Hydrocarbons in Smoked Meat by ASE Extraction-GPC Purification Coupled with GC/MS

Polycyclic aromatic hydrocarbons (PAHs), a class of complex compounds containing two or more benzene rings, are widely found in the environment and food. PAHs are formed during the incomplete combustion of organic matter, such as wood utilized in cooking and food preparation. They have attracted wide attention due to studies which have shown the teratogenicity and carcinogenicity of PAH compounds. For humans, food intake is one of the main sources of PAH exposure, and can be the result of contamination from anthropogenic sources, food processing or cooking practices. In this paper, a validated method employing accelerated solvent extraction (ASE) and gel permeation chromatography (GPC), followed by solid phase extraction (SPE) on silica and analytical determination by GC/MS was applied for the detection of PAHs in smoked meat. The results demonstrate that the method is suitable for the simultaneous determination of 24 PAHs in smoked meat with good efficiency, accuracy and reproducibility.

A Multiclass Multiresidue Method for Analysis of Veterinary Drugs in Chicken by UHPLC/MS/MS

Veterinary drugs are used in animal production to treat diseases, prevent infection and protect growth of animals, which helps provide quality marketplace. However the uncontrolled use may cause heavy human disease so regulatory agencies around the world have established maximum residue levels (MRLs) or tolerances of veterinary drugs in foods. Drug analysis is generally challenging, due to the complexity of sample matrices and diversity of analytes from various classes of chemical properties. In this study, a fast, sensitive and selective method has been developed for analysis of 73 veterinary drugs (covering 13 different chemical classes) in chicken samples by coupling solvent extraction method with LC/MS/MS.

Technolgies

Laboratory Services

Today’s scientific lab leaders are facing new pressures and demands to continue to innovate while looking for more lab productivity. With tighter deadlines, increased budget scrutiny, pressure to improve reproducibility and evolving technologies, time that could be spent on scientific activities is spent on non-core ones. To help you overcome these barriers to success, OneSource Laboratory Services has built a complete suite of solutions that provide the knowledge, applications, services and manpower today’s labs need, including uptime optimization, lab analytics and workflow solutions. Digital innovations give you access to real time reports that help you make informed decisions about your lab. And compliance issues are avoided with guidance from experts who have worked with companies like yours. Our knowledge and experience spans across industries, including Pharmaceuticals/Biopharmaceuticals, Food Safety, Environmental and Industrial. Wherever your challenges lie, OneSource Services will ensure that your lab runs at maximum efficiency, returning time to your scientists to do what they do best.

Liquid Chromatography - Mass Spectrometry (LC-MS) in Food Testing

In recent years, to protect the health of consumers, more meticulous monitoring of food, more rigorous regulations with lower limits of quantification (LOQs) are required. The use of liquid chromatography tandem mass spectrometry (LC/MSMS) is widely recognized as the extremely sensitive and highly specific technique of choice for the determination of food contaminants at trace levels including pesticides, veterinary drugs, natural toxins, and so-called “emerging contaminants”. Our robust and reliable QSight® triple quad systems consistently deliver the throughput and productivity you need in your analytical testing lab. Our LC/MSMS solutions deliver the highest sensitivity and throughput the industry has ever seen and the capability to test for the most challenging, complex samples, including cannabis.

Gas Chromatography - Mass Spectrometry (GC-MS) in Food Testing

Gas Chromatography – Mass Spectrometry (GC-MS) is a widely used technique for qualitative and quantitative analysis of food composition, food additives, flavor and aroma components and contaminants such as pesticides, natural toxins, veterinary drugs and packaging material. Our portfolio of GC/MS solutions is designed to empower your science and ensure you receive accurate, reliable results – every time.

Choose Your Meat & Seafood Solution

Quality

Analysis of Meat and Meat Products Using the DA 6200 NIR Analyzer

With Near Infrared (NIR) technology multi-constituent results are available in seconds rather than several hours as with many traditional chemical analysis methods. With the ability to analyze as often as desired with results in real-time, producers of ground meats, sausages, separated poultry or other meat products can reduce product variations and thereby improve quality and profit. The DA 6200™ is a new NIR instrument making routine meat product analysis easier than ever. It is based on transmission Diode Array NIR technology with the measurement light transmitted through the sample. This means a very large and representative sample volume is analyzed in each measurement. The multi-component analysis is done in 30 seconds using easy to handle magnetic coupled plastic sample cups. transmitted through the sample. This means a very large and representative sample volume is analyzed in each measurement. The multi-component analysis is done in 30 seconds using easy to handle magnetic coupled plastic sample cups.

Analysis of Pork Adulterated Meat

A selective and sensitive LC/MS/MS method for fast identification and analysis of meat samples using three peptides specific for pork as biomarkers. . The optimized sample preparation procedure is easy to follow and can be used for analyzing raw, cooked and processed meat products. This method can selectively detect peptides from pork meat species at a threshold detection limit of 1% w/w (10 mg/g) in a variety of food products and thus the method can be useful for analysis of Halal food (or pork related food products) samples.

DA 7300 Mechanically Separated Poultry A

Using the DA 7300 in-line NIR a production facility can have real-time 24/7 analysis capability for the accurate control of moisture, protein, and fat in mechanically separated poultry meat. The instrument analyzes moving product directly in a pipe allowing users to significantly reduce sampling error associated with grab samples. It also provides a complete analysis profile of the entire batch. Reduction in sampling error and the use of stable instrumentation developed for rugged process environments yield data that can be used to achieve true process control.

Analysis of Blood meal for Protein, Moisture and Ash

For processors as well as users of blood meal it is essential to be able to test samples for nutritional composition and rapid analysis of parameters such as moisture, oil and protein are of great benefit. The Near Infrared Reflectance (NIR) technique is particularly suited for measurement of these types of samples. The DA 7200 is a proven full-spectrum, NIR instrument designed for use in the rendering and feed industries. Using novel diode array technology it performs a multi-component analysis in only 6 seconds with no or little sample preparation required.

Analysis of Moisture, Protein, Fat, & Ash in Poultry Meal Using Perten DA 7200

Compositional analysis of poultry meal is vital to running a rendering plant and to formulating pet foods and feeds. The Near Infrared Reflectance (NIR) technique is particularly suited for measurement of poultry meal. The DA 7200 is a new fullspectrum, NIR instrument. Its novel diode array technology it performs a multi-component analysis in only 6 seconds with no sample grinding or sample preparation required. During this time 180 full spectra are collected and averaged. As the sample is analyzed in an open dish, the problems associated with sample cups are avoided and operator influence on results is minimal.

Fishmeal - DA 7250

Fish meal is an important source of protein and other nutrients, used in feed and pet food production. Rapid compositional testing is of paramount importance. The Near Infrared Reflectance (NIR) technology is highly suitable for these purposes. The DA 7250 uses novel Diode Array NIR technology and performs a multi-component analysis in less than 10 seconds.

Analysis of Meat and Meat Products using the DA 7250 NIR Analyzer

For meat processors and producers of meat products it is critical to be able to monitor and control key nutritional parameters such as fat, moisture, protein, collagen and salt. With Near Infrared (NIR) technology multi-constituent results are available in seconds rather than several hours as with many traditional chemical analysis methods. NIR instrument usage provide great values in production of mechanically separated poultry, ground meats, sausage and other meat products.

Analysis of Raw Meat By-Products using the DA 7250 NIR Analyzer

For meat processors and users of meat by-products, such as pet food producers, it is important to rapidly test samples for protein and other nutritional contents.The Near Infrared Reflectance (NIR) technology is highly suitable for these purposes. The DA 7250 uses novel Diode Array NIR technology and performs a multi-component analysis in less than 10 seconds. During this time a large number of full spectra are collected and averaged.

DA 6200 Meat Brochure

It’s critical that processors and producers of meat products are able to monitor and control fat, moisture, protein, and other key nutritional parameters. With near infrared (NIR) technology, you can achieve multiconstituent results in seconds rather than hours, as with traditional chemical analysis methods. Our DA 6200™ NIR meat analyzer gives you the ability to analyze any time, with real time results so producers of ground meats, sausages, separated poultry, and other meat products can reduce product variations while improving profitability and quality. The DA 6200 meat analyzer can help improve profit, quality, and consistency in all types of meat production. You can analyze fat, moisture, protein, and more – quickly, easily, and accurately – or use it to verify incoming meats, in-process blends, and finished products. And with its on the- spot analysis capability, you can run your plant more efficiently.

Safety

A Multiclass Multiresidue Method for Analysis of Veterinary Drugs in Chicken by UHPLC/MS/MS

Veterinary drugs are used in animal production to treat diseases, prevent infection and protect growth of animals, which helps provide quality marketplace. However the uncontrolled use may cause heavy human disease so regulatory agencies around the world have established maximum residue levels (MRLs) or tolerances of veterinary drugs in foods. Drug analysis is generally challenging, due to the complexity of sample matrices and diversity of analytes from various classes of chemical properties. In this study, a fast, sensitive and selective method has been developed for analysis of 73 veterinary drugs (covering 13 different chemical classes) in chicken samples by coupling solvent extraction method with LC/MS/MS.

Determination of Thirteen Beta Agonists in Pork Using UHPLC - Tandem Mass Spectrometry

Beta-adrenergic receptor agonists (ß- agonists) are synthetic drugs utilized in the treatment of conditions such as asthma in humans, and are also used as a growth-promoting agent in food-producing animals. The use of ß- agonists in food-producing livestock has been either banned or regulated across many countries owing to human health concerns. To aid in the monitoring and detection of ß- agonists in livestock, a highly sensitive and selective analytical method has been developed, and is presented in this study. This LC/MS/MS method details the analysis of 13 ß- agonists in pork samples, and utilizes isotopically-labeled internal standards to compensate for matrix effects present in complex food matrices.

High Throughput Screening Solutions for Nitrofurans and Chloramphenicol in Shrimp Samples

The use of nitrofurans, a class of broad-spectrum antibiotics widely used in the aquaculture industry and their metabolites, has been regulated by everal countries and organizations across the world for their ahrmful effects on human health. ELISA assays are widely used for the detection of nitrofuran metabolites and chloramphenicol for regulatory conformance owing to the high sensitivity, selectivity and ease of use of the method. In this study, we demonstrate the accuracy and precision (CCß validation study) of the simultaneous 5-in-1 sample extraction method by manual ELISA and DS2 automation methods. Sensitivityof the assay kits (LOD) was also demonstrated using manual and DS2 method. Finally, sample variability testing was performed to characterize the effects of matrix from various shrimp sources.

MaxSignal Ractopamine ELISA Verification Report

Ractopamine has been banned for use as a livestock growth promoter in many regions and countries including Europe and China. To prevent ractopamine residues from entering the food chain, both producers and government surveillance agencies need technologies and methods that can provide rapid, accurate and reliable detection at specific sensitivities. MaxSignal® Ractopamine ELISA Kit enables government agencies, food manufacturers, as well as quality assurance organizations, to detect ractopamine as low as 0.1 ng/g or 0.1 ppb in a variety of sample types. In the current study, an improved sample preparation protocol was developed and validated for swine feed.

Determination of Polycyclic Aromatic Hydrocarbons in Seafood by UHPLC- MS/MS

Polycyclic aromatic hydrocarbons (PAHs) can contaminate foods during smoking, heating, and drying processes that allow combustion products to come into direct contact with food. They can also enter food supply chains through contaminated air and water, and accumulate in various food chains. Regulations are in place to monitor PAHs levels in foods; the EU set a stringent maximum residue limit (MRL) for BaP in muscle meat of smoked fish and smoked fishery products at 2 µg/kg.2 In this study, seafood samples were prepared using a QueChERS extraction method followed by a dispersive solid-phase extraction clean-up step. The samples were subsequently analyzed by coupling a UHPLC system with a triple quadrupole mass spectrometer.

Determination of 24 Polycyclic Aromatic Hydrocarbons in Smoked Meat by ASE Extraction-GPC Purification Coupled with GC/MS

Polycyclic aromatic hydrocarbons (PAHs), a class of complex compounds containing two or more benzene rings, are widely found in the environment and food. PAHs are formed during the incomplete combustion of organic matter, such as wood utilized in cooking and food preparation. They have attracted wide attention due to studies which have shown the teratogenicity and carcinogenicity of PAH compounds. For humans, food intake is one of the main sources of PAH exposure, and can be the result of contamination from anthropogenic sources, food processing or cooking practices. In this paper, a validated method employing accelerated solvent extraction (ASE) and gel permeation chromatography (GPC), followed by solid phase extraction (SPE) on silica and analytical determination by GC/MS was applied for the detection of PAHs in smoked meat. The results demonstrate that the method is suitable for the simultaneous determination of 24 PAHs in smoked meat with good efficiency, accuracy and reproducibility.

Technologies

NIR - Diode Array in Food Testing

Thanks to Diode Array NIR technology, multi-constituent results are available in less than 10 seconds rather than several hours as with many traditional chemical analysis methods. During this time a large number of full spectra are collected and averaged. The analysis of full spectra makes it possible to determine complex parameters and to analyze different samples without recalibration. With the ability to analyze as often as desired with results in real-time, food processors can reduce product variations and thereby improve quality and profit.

Liquid Chromatography - Mass Spectrometry (LC-MS) in Food Testing

In recent years, to protect the health of consumers, more meticulous monitoring of food, more rigorous regulations with lower limits of quantification (LOQs) are required. The use of liquid chromatography tandem mass spectrometry (LC/MSMS) is widely recognized as the extremely sensitive and highly specific technique of choice for the determination of food contaminants at trace levels including pesticides, veterinary drugs, natural toxins, and so-called “emerging contaminants”. Our robust and reliable QSight® triple quad systems consistently deliver the throughput and productivity you need in your analytical testing lab. Our LC/MSMS solutions deliver the highest sensitivity and throughput the industry has ever seen and the capability to test for the most challenging, complex samples, including cannabis.

MaxSignal ELISA Kits

An ELISA or Enzyme Linked Immuno-Sorbent Assay allows for the rapid screening and quantitation of analytes against a variety of materials. We offer a wide range of ELISA kits to measure the safety of dairy, meat, poultry, seafood, grain, feed, and honey. ELISAs involve at least one antibody with specificity for a particular analyte or antigen and consist of the following basic protocol: Liquid sample containing the target analyte is added to a microwell that is pre-coated with analyte-specific antibodies. Any target analyte in the sample binds to the antibodies. An enzyme-linked antibody or antigen is added to the microwell, also binding to the analyte specific antibodies coated to the microwell. A substrate is added which changes its color as it interacts with the enzymes linked to the analytes or antibodies. The color change is measured with a spectrophotometer. Quantitation of the analyte is determined by comparing the test sample results against a standard curve of known analyte concentrations.

Gas Chromatography - Mass Spectrometry (GC-MS) in Food Testing

Gas Chromatography – Mass Spectrometry (GC-MS) is a widely used technique for qualitative and quantitative analysis of food composition, food additives, flavor and aroma components and contaminants such as pesticides, natural toxins, veterinary drugs and packaging material. Our portfolio of GC/MS solutions is designed to empower your science and ensure you receive accurate, reliable results – every time.

Choose Your Meat & Seafood Solution

Quality

Analysis of Blood meal for Protein, Moisture and Ash

For processors as well as users of blood meal it is essential to be able to test samples for nutritional composition and rapid analysis of parameters such as moisture, oil and protein are of great benefit. The Near Infrared Reflectance (NIR) technique is particularly suited for measurement of these types of samples. The DA 7200 is a proven full-spectrum, NIR instrument designed for use in the rendering and feed industries. Using novel diode array technology it performs a multi-component analysis in only 6 seconds with no or little sample preparation required.

Analysis of Moisture, Protein, Fat, & Ash in Poultry Meal Using Perten DA 7200

Compositional analysis of poultry meal is vital to running a rendering plant and to formulating pet foods and feeds. The Near Infrared Reflectance (NIR) technique is particularly suited for measurement of poultry meal. The DA 7200 is a new fullspectrum, NIR instrument. Its novel diode array technology it performs a multi-component analysis in only 6 seconds with no sample grinding or sample preparation required. During this time 180 full spectra are collected and averaged. As the sample is analyzed in an open dish, the problems associated with sample cups are avoided and operator influence on results is minimal.

Fishmeal - DA 7250

Fish meal is an important source of protein and other nutrients, used in feed and pet food production. Rapid compositional testing is of paramount importance. The Near Infrared Reflectance (NIR) technology is highly suitable for these purposes. The DA 7250 uses novel Diode Array NIR technology and performs a multi-component analysis in less than 10 seconds.

Analysis of Meat and Meat Products using the DA 7250 NIR Analyzer

For meat processors and producers of meat products it is critical to be able to monitor and control key nutritional parameters such as fat, moisture, protein, collagen and salt. With Near Infrared (NIR) technology multi-constituent results are available in seconds rather than several hours as with many traditional chemical analysis methods. NIR instrument usage provide great values in production of mechanically separated poultry, ground meats, sausage and other meat products.

Analysis of Raw Meat By-Products using the DA 7250 NIR Analyzer

For meat processors and users of meat by-products, such as pet food producers, it is important to rapidly test samples for protein and other nutritional contents.The Near Infrared Reflectance (NIR) technology is highly suitable for these purposes. The DA 7250 uses novel Diode Array NIR technology and performs a multi-component analysis in less than 10 seconds. During this time a large number of full spectra are collected and averaged.

DA 6200 Meat Brochure

It’s critical that processors and producers of meat products are able to monitor and control fat, moisture, protein, and other key nutritional parameters. With near infrared (NIR) technology, you can achieve multiconstituent results in seconds rather than hours, as with traditional chemical analysis methods. Our DA 6200™ NIR meat analyzer gives you the ability to analyze any time, with real time results so producers of ground meats, sausages, separated poultry, and other meat products can reduce product variations while improving profitability and quality. The DA 6200 meat analyzer can help improve profit, quality, and consistency in all types of meat production. You can analyze fat, moisture, protein, and more – quickly, easily, and accurately – or use it to verify incoming meats, in-process blends, and finished products. And with its on the- spot analysis capability, you can run your plant more efficiently.

Analysis of Meat and Meat Products Using the DA 6200 NIR Analyzer

With Near Infrared (NIR) technology multi-constituent results are available in seconds rather than several hours as with many traditional chemical analysis methods. With the ability to analyze as often as desired with results in real-time, producers of ground meats, sausages, separated poultry or other meat products can reduce product variations and thereby improve quality and profit. The DA 6200™ is a new NIR instrument making routine meat product analysis easier than ever. It is based on transmission Diode Array NIR technology with the measurement light transmitted through the sample. This means a very large and representative sample volume is analyzed in each measurement. The multi-component analysis is done in 30 seconds using easy to handle magnetic coupled plastic sample cups. transmitted through the sample. This means a very large and representative sample volume is analyzed in each measurement. The multi-component analysis is done in 30 seconds using easy to handle magnetic coupled plastic sample cups.

DA 7300 Mechanically Separated Poultry A

Using the DA 7300 in-line NIR a production facility can have real-time 24/7 analysis capability for the accurate control of moisture, protein, and fat in mechanically separated poultry meat. The instrument analyzes moving product directly in a pipe allowing users to significantly reduce sampling error associated with grab samples. It also provides a complete analysis profile of the entire batch. Reduction in sampling error and the use of stable instrumentation developed for rugged process environments yield data that can be used to achieve true process control.

Safety

MaxSignal Ractopamine ELISA Verification Report

Ractopamine has been banned for use as a livestock growth promoter in many regions and countries including Europe and China. To prevent ractopamine residues from entering the food chain, both producers and government surveillance agencies need technologies and methods that can provide rapid, accurate and reliable detection at specific sensitivities. MaxSignal® Ractopamine ELISA Kit enables government agencies, food manufacturers, as well as quality assurance organizations, to detect ractopamine as low as 0.1 ng/g or 0.1 ppb in a variety of sample types. In the current study, an improved sample preparation protocol was developed and validated for swine feed.

Meat and Seafood Testing Solutions

Food testing labs like yours are constantly challenged with accurately analyzing samples quickly and efficiently - all while striving to reduce costs due to market forces. Your commitment to ensuring meat and seafood are safe for consumption, as demand increases, is an uphill battle. Our commitment to you: to provide a range of solutions across multiple technologies, products, and services that meets or exceeds the testing needs of food processors. Our solutions offer more efficiency and increased accuracy and sensitivity for better yields in real time with minimal training. From instrumentation and software to consumables and reagents to service and support, we are dedicated to providing you with end-to-end solutions that ease your everyday challenges of automation, throughput, service, and time to results.

Pathogen Analysis Fast

Solus Pathogen Detection System offer food testing laboratories a highly efficient method for the detection of Salmonella, Listeria, and E. coli O157 in food and environmental samples. Presented in an immunoassay format, our pathogen tests are versatile and can be used manually or in conjunction with automation. Our tests are robust, reliable, and validated by AFNOR to ISO 16140 and/or through AOAC performance tested method (PTM) or Official Method of Analysis (OMA) schemes.

Technologies

NIR - Diode Array in Food Testing

Thanks to Diode Array NIR technology, multi-constituent results are available in less than 10 seconds rather than several hours as with many traditional chemical analysis methods. During this time a large number of full spectra are collected and averaged. The analysis of full spectra makes it possible to determine complex parameters and to analyze different samples without recalibration. With the ability to analyze as often as desired with results in real-time, food processors can reduce product variations and thereby improve quality and profit.

MaxSignal Ractopamine ELISA Verification Report

Ractopamine has been banned for use as a livestock growth promoter in many regions and countries including Europe and China. To prevent ractopamine residues from entering the food chain, both producers and government surveillance agencies need technologies and methods that can provide rapid, accurate and reliable detection at specific sensitivities. MaxSignal® Ractopamine ELISA Kit enables government agencies, food manufacturers, as well as quality assurance organizations, to detect ractopamine as low as 0.1 ng/g or 0.1 ppb in a variety of sample types. In the current study, an improved sample preparation protocol was developed and validated for swine feed.

Pathogen Analysis Fast

Solus Pathogen Detection System offer food testing laboratories a highly efficient method for the detection of Salmonella, Listeria, and E. coli O157 in food and environmental samples. Presented in an immunoassay format, our pathogen tests are versatile and can be used manually or in conjunction with automation. Our tests are robust, reliable, and validated by AFNOR to ISO 16140 and/or through AOAC performance tested method (PTM) or Official Method of Analysis (OMA) schemes.