Atomic Spectroscopy (AA) is a well-established and reliable technique for the analysis of trace elements in food stuffs. With more than 50 years of experience as industry leader in Atomic Spectroscopy, PerkinElmer provides state-of-the-art instrumentation and support to food laboratories requiring excellent sensitivity, accuracy and precision in compliance with the stringent legislation to control trace elements in food products.
The PinAAcle™ 900H is a combined flame/furnace system with continuum source background correction.
The PinAAcle™ 900F is a flame-only system featuring an eight-lamp mount and automated flame and burner assembly optimization for enhanced productivity.
The PinAAcle™ 900T is a combined flame/longitudinal Zeeman furnace system providing the flexibility to switch between flame and furnace in seconds.
The PinAAcle™ 900Z is a high-performance furnace-only atomic absorption (AA) spectrometer.
A major challenge in the analysis of tea leaves is the extremely low analyte levels and thevery high matrix levels. For many years, graphite furnace atomic absorption spectrophotometry(GFAAS) has been a reliable technique and the preferred method for this analysis. The use oflongitudinal Zeeman background correction and matrix modifiers help to achieve extremelylow detection limits in high matrix samples such as tea leaves, making GFAAS an indispensibletool for carrying out such analyses.
Toxic elements, such as lead (Pb) and cadmium (Cd), are entering the food chain through environmental contamination. Rice, as the most widely consumed cereal grain in Asia, can quickly pick up Pb and Cd from soil, thereby seriously endangering human health through diet. These toxic element levels need to be carefully monitored. Maximum levels of Pb and Cd are strictly regulated in Asian countries, especially in China; therefore, it is extremely important to develop a simple, reliable method for trace levels of Pb and Cd in rice. The allowable maximum levels of Pb and Cd in grains in EU and China are required to be below 0.2 mg/kg (Commission Regulation EC 1881/2006 and Chinese GB 2715-2016 Hygienic Standard). Graphite furnace atomic absorption spectroscopy (GFAAS) is the officially recommended technique for detection of trace elements in various food stuffs (GB/T 5009.15-2017, GB/T 5009. 12-2017 and EN 14083:2003). Food samples are usually pretreated before GFAAS analysis using various methods: microwave digestion, hot block digestion, dry ashing, and hot plate digestion. These conventional digestion procedures are usually complicated and time-consuming (2-4 hours or longer). Plus, they require large quantities of corrosive and oxidizing reagents, increasing the chance for contamination which could lead to inaccurate results. However, fast digestion can effectively speed up the sample preparation procedure while reducing the use of corrosive reagents and the chance for contamination.
The performance of this method was validated by assessing the Standard Reference Materials (SRMs) from the US National Institute of Standards and Technology (NIST) and China National Institute of Metrology (NIM) as well as by comparing these results with those obtained using inductively coupled plasma mass spectrometry (ICP-MS) after complete sample digestion by microwave method
This work demonstrates the ability to accurately measure nutritional elements in a variety of milk types by flame atomic absorption using FAST Flame sample automation for high sample throughput.
The determination of the inorganic profile of oils is important because of the metabolic role of some elements in the human organism. On the one hand, there is knowledge of the food's nutritional value, which refers to major and minor elements.
There is an increasing need to monitor the essential element levels in food samples at ever decreasing concentrations. For this purpose, very sensitive, yet rapid and inexpensive methods are necessary. The quantification of trace metals in food samples has routinely been carried out by ICP-OES, ICP-MS, graphite furnace atomic absorption (GFAA) and flame atomic absorption (FAA). Compared with other techniques, FAA has the characteristics of good precision and simplicity with lower cost and minimum operator proficiency.
The efficient production of these nutritionally fortified breakfast cereals requires careful formulation and uniformity batch to batch. Ongoing analytical measurement of nutritional additives and the total micronutrient content in the cereal is one way in which food producers can quantify the quality and consistency of their cereal products. The ability to quickly, accurately, and easily analyze their samples is also key to timely data reporting, allowing real-time batch adjustments to be made and enhancing continuous process control. Food producers must also meet nutritional labeling guidelines which require an accurate assessment of micronutrients for regulatory labeling compliance.
Graphite furnace atomic absorption spectrophotometry (GFAAS) has been widely applied to the determination of trace elements in food due to its selectivity, simplicity, high sensitivity, and its capability for accurate determinations in a wide variety of matrices. Edible oils are generally low in trace element concentrations, however, metals such as arsenic (As), lead (Pb), cadmium (Cd), chromium (Cr), and selenium (Se) can be found and are known for their toxicities which affect the health of consumers.
With an inherent toxicity, a tendency to accumulate in the food chain and a particularly low removal rate through excretion, lead (Pb), cadmium (Cd) and arsenic (As) cause harm to humans even at low concentrations.
There are many mineral dietary supplements available in today's marketplace to ensure that mineral deficiencies do not occur in one's diet. The mineral content of these products must be verified for quality control purposes.
Ingestion of trace elements from food can be linked to nutrition, disease, and physiological development. Whether they are needed for proper nutritional value or contain toxic elements, the presence of major and minor elements in food needs to be verified to help determine health effects for the consumer. Acute or chronic exposure to heavy metals can lead to damaged nervous system function and have detrimental effects on vital organs. Food safety laboratories performing these analyses are often high-throughput and require a detection tool that is efficient and cost effective.
This work demonstrates the ability to accurately measure nutritional elements in a variety of fresh and dried fruits by flame atomic absorption using a FAST Flame sample automation for high sample throughput.
Toxic elements, such as lead (Pb) and cadmium (Cd), are entering the food chain through environmental contamination. Rice, as the most widely consumed cereal grain in Asia, can quickly pick up Pb and Cd from soil, thereby seriously endangering human health through diet. These toxic element levels need to be carefully monitored. Maximum levels of Pb and Cd are strictly regulated in Asian countries, especially in China; therefore, it is extremely important to develop a simple, reliable method for trace levels of Pb and Cd in rice. The allowable maximum levels of Pb and Cd in grains in EU and China are required to be below 0.2 mg/kg (Commission Regulation EC 1881/2006 and Chinese GB 2715-2016 Hygienic Standard). Graphite furnace atomic absorption spectroscopy (GFAAS) is the officially recommended technique for detection of trace elements in various food stuffs (GB/T 5009.15-2017, GB/T 5009. 12-2017 and EN 14083:2003). Food samples are usually pretreated before GFAAS analysis using various methods: microwave digestion, hot block digestion, dry ashing, and hot plate digestion. These conventional digestion procedures are usually complicated and time-consuming (2-4 hours or longer). Plus, they require large quantities of corrosive and oxidizing reagents, increasing the chance for contamination which could lead to inaccurate results. However, fast digestion can effectively speed up the sample preparation procedure while reducing the use of corrosive reagents and the chance for contamination.
Lead (Pb) and cadmium (Cd) are common pollutants in grains and are extremely toxic. Pb is harmful to human organs even at trace levels, and once it accumulates in the body, it causes inhibition of hemoglobin formation and neurological disorders. Cd is even classified as human carcinogen [Group 1 - according to International Agency for Research on Cancer]. It is reported that Cd leads to severe kidney problems which can be fatal and is also associated with brittle bones and liver problems. Rice, as the most widely consumed cereal grain in Asia/China, can quickly pick up Pb and Cd from toxins, pesticides and fertilizers in the soil, thereby endangering the health of millions of people through their diet. Therefore, it is extremely important to develop a simple, reliable method to monitor the levels of Pb and Cd in rice. According to Chinese national standard GB 2715-2016 Hygienic Standard for Grain, the maximum concentrations of Pb or Cd in grains must be below 0.2 mg/kg; the allowable level in the European Union is the same [EC 1881/2006]. The official technique for the determination of heavy metals in both cases is graphite furnace atomic absorption spectroscopy (GFAAS, GB/T 5009. 12-2017, GB/T 5009-2017. 15 and EN 14083:2003). Samples can be pretreated using various methods, including microwave digestion, hot block digestion, dry ashing, and hot plate digestion. It is found that these conventional digestion procedures are always complicated and time-consuming (two-four hours or even longer). Plus, conventional sample preparation techniques require large quantities of corrosive and oxidizing reagents, increasing the chance for contamination which could lead to inaccurate results. Special PTFE vessels are needed for microwave digestion; however, reusable utensils might also cause cross contamination.
This work demonstrates the ability to accurately measure nutritional elements in a variety of milk types by flame atomic absorption using FAST Flame sample automation for high sample throughput.
This work demonstrates the ability of the PinAAcle 900 flame AA spectrometer to measure Cu, Fe, and Mn in wines to comply with Chinese wine import regulations coupled with FAST Flame sample automation for increased throughput.
This work demonstrates the ability to measure several elements in beer with Flame atomic absorption using the PinAAcle 900. No significant differences were observed between beers in glass bottles or metal cans.
Foods, infant formula, milk, and water provide significant exposure routes for metal contaminants. The effect of lead exposure at low levels has been well established and levels below toxic have been shown to contribute to behavioral and learning issues. In this work both the GFAA and ICP-MS methods capable at the concentration levels of interest and under control during sample measurement are shown. GFAA has detection limit capability well below the level of concern and provides an economical choice for smaller laboratories or those with a smaller workload. ICP-MS provides excellent detection limits and offers efficient multielement capability for the detection of other hazardous elements in the same run, such as lead.
Follow Us: