PerkinElmer

speciation-analyses

Business Insights (19)
Filters:

Filters :

Resource Library
  • Application Note (17)
  • Brochure (1)
  • Product Note (1)

1-12 of 19 Business Insights

Sort by

  • Brochure

    Clarus 590 and 690 Brochure

    In today’s budget-constrained, yet highly competitive laboratory environments, the samples you’re being asked to analyze – whether food, pharmaceutical, petrochemical, or environmental – are increasingly difficult. But for some labs, having a dedicated GC for every application isn’t an option. For them, a GC that can do it all isn’t just a nice-to have, it’s a necessity

  • Product Note

    Ozone Precursor System

    The analysis of C2 to C12 volatile organic ozone-precursor compounds can present a serious technical challenge to the analytical chemist. Low concentrations in the atmosphere coupled with the need to monitor frequently to assess diurnal variations means that a preconcentration step of the sample before analysis by thermal desorption is required. While the samples can be collected in the field and returned to the laboratory, remote, field-based analysis is desired which allows reduced data turnaround time, minimizes sample collection hardware and permits the presence or absence of VOCs to be correlated with meteorological data. In the field, low-molecular-weight C2 VOCs can be trapped on solid adsorbents if those adsorbents are cryogenically cooled.

  • Application Note

    Identification of VOCs in In-Vehicle Interior

    Customer complaints of odors within a new car are rising with the increasing number of new car buyers. Although odors can be subjective, it is now well known that the new car smell is the result of chemicals emitted from the in-vehicle interior components such as the dashboard, interior panels, seat coverings, flooring materials, and so on. This application note describes a method for the automotive industry that provides a qualitative analysis and the olfactory character of each component using the TD-GC/MS-Olfactory Port.

  • Application Note

    Ambient Air Monitoring - U.S. EPA PAMS

    Air pollution is a global concern. Ground-level ozone has become an increasingly important issue in developed nations, as the health effects of smog are more clearly understood. The monitoring of VOC ozone precursor compounds will continue to play a role in defining and reducing air pollution in developed and developing nations in the next decade. The data presented here shows the excellent results of improved separation via Elite-624Sil MS column with real world samples, simplified column connections to the Dean Switching device and trap with modernized triple bed trap with guard zone technologies.

  • Application Note

    Analysis of Volatile Organic Compounds (VOCs) in Air Using US EPA Method TO-17

    Optimized methods are needed for the analysis of toxic compounds in air to understand the impact to human health. People breathe approximately 20,000 liters of air a day so this concern is significant. EPA Method TO-17 is used to determine toxic compounds in air after they have been collected onto sorbent tubes. This application note demonstrates that the PerkinElmer TurboMatrix™ Thermal Desorber and the PerkinElmer Clarus® SQ 8 GC/MS will meet and exceed the criteria set forth in EPA method TO-17. Detailed instrument method parameters are presented, with precision, recovery, linearity and detection limit results.

  • Application Note

    Analysis of Volatile Organic Compounds in Air by Online TD-GC

    Volatile Organic Compounds (VOCs) have been identified as a major source of air pollution, and as such, have been regulated as a cause of both primary and secondary pollution, such as photochemistry smog. The U.S. Environmental Protection Agency (U.S. EPA) regulates 189 hazardous air pollutants under the Clean Air Act (CAA) of 1990, 51% of which are VOCs. The CAA offers further regulation and guidance for the monitoring of VOCs and ozone pollution in ambient air with a list of 57 ozone-precursor target analytes monitored under U.S. EPA’s Technical Assistance Document for Sampling and Analysis of Ozone Precursors, EPA/600-R-98/161 (1998)1, as well as the requirement of states to establish Photochemical Assessment Monitoring Stations (PAMS). This paper details an application for VOC monitoring with an extended target compound list utilizing a PerkinElmer TurboMatrix 300 TD and PerkinElmer Clarus® 580 GC. The application note demonstrates results with good repeatability, linearity and detection limits.

  • Application Note

    New Research Evaluating Cisplatin Uptake in Ovarian Cancer Cells by Single Cell ICP-MS

    Cisplatin, carboplatin, and oxaliplatin are the most widely used of platinum-based cancer chemotherapy drugs in the Western world. Cisplatin's effectiveness is due to its ability to bind to the DNA, resulting in DNA-platinum (Pt) adducts, which bend the DNA. The cells must then repair the DNA damage, otherwise DNA replication is blocked resulting in cell death. Many cancers are initially sensitive to platinum-based treatment, but patients frequently relapse with tumors displaying resistance to further cisplatin therapy.

  • Application Note

    Residual Solvents in Pharmaceuticals by USP Chapter 467 Methodology

    The synthesis of active pharmaceutical ingredients (API) may require multiple reaction steps that produce undesirable reaction byproducts or utilize various solvents that have to be removed from the finished product. These solvents and byproducts may be measured with headspace gas chromatography for those volatile residual organic solvents according to the USP chapter 467 method. Method USP 467 classifies residual solvents into three classes according to toxicity; class 1 solvents are to be avoided unless there is strong justification, class 2 solvents are those that should be limited due to toxicity concerns.

  • Application Note

    Characterization of TiO2 Nanoparticle Release from Fabrics By Single Particle ICP-MS

    In the textile industry, the use of titanium dioxide (TiO2) nanoparticles (NPs) is increasing due to their ability to provide UV protection, increase the hydrophilic nature of fabrics, provide antibacterial characteristics, and reduce odors. This work studies the release of TiO2 NPs from various commercial textile products which do not advertise that TiO2 NPs have been added.

  • Application Note

    Determination of t-Butyl Methyl Ether (MTBE) in Water and Soil

    As an alternative to tetraethyl lead, t-Butyl methyl ether (MTBE) has been widely used as an octane enhancer for gasoline. Studies have found increasingly high levels of MTBE in groundwater, often a result of accidental spills or leaking underground storage tanks. In this paper, a method for the determination of MTBE in water and soil was established using the PerkinElmer Clarus® 690 GC/FID with the TurboMatrix™ HS-40 Trap.

  • Application Note

    Analysis of Drinking and Natural Waters using the NexION 2000 ICP-MS

    This work has demonstrated the ability of the NexION 2000 ICP-MS to analyze both natural and drinking water samples in Standard (i.e. non-cell) mode, in accordance with U.S. EPA Method 200.8. Accuracy has been demonstrated through the analysis of several reference materials and spike recoveries, with stability of at least nine hours. Method detection limits allow for trace-level determinations, while the ability to selectively suppress user-defined isotopes also allows the measurement of analyte levels usually only possible by ICP-OES or Flame AA. The NexION 2000 provides a comprehensive solution to the challenge of U.S. EPA Method 200.8 and other drinking and natural water analytical requirements across the globe.

  • Application Note

    Analysis of Single-Walled Carbon Nanotubes with SP-ICP-MS

    Measuring the amount of metals in CNTs presents a challenge. High levels can be measured directly in the solid by several techniques, including XRF and TEM, while low-level analysis requires complete digestion of the sample prior to analysis by ICP-OES or ICP-MS.

  • Jump to:
Products & Services (4)
Filters:

1-4 of 4 Products & Services

Sort by

  • Clarus 690 GC

    Clarus 690 GC

    Designed for fast-paced, high-volume laboratories that need to increase analytical cycle times, the Clarus 690 GC provides superior sensitivity, capacity, and throughput – with flexibility to handle more. Our industry-leading portfolio of TurboMatrix options include headspace (HS), manual and automated thermal desorption (TD, ATD) and MultiPrep Autosampler solutions.
  • NexION 2000 ICP-MS

    NexION 2000 ICP Mass Spectrometer

    PerkinElmer’s NexION® 2000 is the most versatile ICP-MS on the market, featuring an array of unique technologies that combine to deliver the highest performance no matter what your analytical challenge. Discover the effortless versatility of an instrument that makes it easy to handle any sample matrix, any interference, and any particle size.

    PerkinElmer received on April 11, 2018 the Application Award from LaborPraxis in the category Bio and Pharma Analysis for the NexION 2000 ICP-MS. We were awarded this prize during analytica 2018 in Munich, Germany, in acknowledgment of a new technique enabling users to quantify the amount of metal in an individual cell for the first time.
  • Clarus 590

    Clarus 590 GC

    With its new high performance features, our robust Clarus® 590 GC offers improved sensitivity, reduced carryover and is easy to use and maintain. Designed with the same innovative features of the Clarus 690 GC, you have the most versatile sample handling options to choose from. Our comprehensive, industry-leading TurboMatrix solutions include options for headspace (HS), manual and automated thermal desorption (TD, ATD) and a flexible MultiPrep Autosampler for liquid sampling and SPME.
  • NexION 1000B ICP-MS

    NexION 1000 ICP Mass Spectrometer

    The NexION® 1000 ICP-MS is the ideal high-throughput system for routine, multi-elemental, trace-level analyses that meet regulatory standards – and that works within your budget. It features a host of proprietary technologies that combine to deliver exceptional speed and operational simplicity, making your lab more efficient than ever before.