check quantity

AlphaPlate-384, Light gray, untreated, Case of 50

384-well light gray microplates specifically designed for AlphaLISA and AlphaScreen assays.

Part Number
Unit Size
List Price
Your Price
Case of 50
567.00 USD
Case of 200
2158.00 USD
Buy Now

Please enter valid quantity

Please log in to add favorites.



Packaging Notes:

  • Cases of 50 are packaged as 2 sleeves of 25 plates each. Each sleeve as 5 wraps with 5 plates.
  • Cases of 200 are packaged as 8 sleeves of 25 plates each. Each sleeve as 5 wraps with 5 plates.

Well Plate Dimensions

Well format: 384-well

Description Specification
Number of Rows 16
Number of Columns 24
Well volume 105 µL
Recommended working volume 24 µL- 90 µL
Height (mm) 14.35
Length (mm) 127.76
Width (mm) 85.48
Well diameter (mm) 3.65
Well depth (mm) 10.4
A1 to top offset (mm) 9.0
A1 to side offset (mm) 12.10
Well-to-well spacing (mm) 4.50
Volume 105 μL


Automation Compatible Yes
Coating Treatment Untreated
Color Gray
Detection Method Luminescence, Alpha
Material Polystyrene
Product Brand Name AlphaPlate
Shipping Condition Ambient
Sterile No
Unit Size Case of 50
Wells Number 384 well plate
Resources, Events & More
  • All

Application Note

A Comparative Study of Two Immunoassay Platforms to Determine Lentivirus Titer for CAR-T Development

The main vectors of gene therapy in research are viruses. The most popular tool for gene delivery is a genetically modified lentivirus. Modified lentivirus (HIV-1) vectors retain their ability to infect undivided cells, thereby increasing their ability to transduce a wide variety of cells, including those that are difficult to transduce. This advantage enables the stable long-term expression of a transgene.

In immunotherapy, CAR-T cells are manufactured by transducing the CAR gene with an HIV-1 vector in T cells to express a specific chimeric p24 protein on their surface. This allows them to recognize cancer cells and destroy them. These CAR-T cells must be generated individually to treat each patient.

This application note demonstrates a comparative quantification of the p24 titer in a lentiviral GFP control sample using Alliance HIV-1 p24 Antigen ELISA and p24 AlphaLISA immunoassay platforms.

Check out the different sections of this application note:

  • A lentiviral vector that encodes the CAR construct
  • Determination of the efficiency of transient co-transfection by measuring viral titer
  • Detection of the presence of a p24 HIV-1 specific antibody in the sample
  • Quantification of targets present in the sample

PDF 277 KB
Alpha Terbium SureFire UltraMultiplex: Simultaneous Dual Phosphoprotein Target Analysis

Evaluating pharmaceutical compound efficacy and safety in regulating cell behavior can involve the study of multiple signal transduction pathways and measuring more than one cellular target can provide greater confidence of positive compound hits on the cellular target of interest. Protein phosphorylation has been identified as a useful readout of cellular activation or inhibition, and these pathways are commonly targeted for therapeutic modulation of disease.

Numerous assay technologies are available to look at protein phosphorylation for drug development, including the AlphaLISA SureFire Ultra which provides a highly sensitive, fully homogenous option for the analysis of signaling pathways. In this application note, we describe the implementation of multiplexing with the AlphaLISA SureFire Ultra Multiplex assay, the only multiplexing platform that is truly homogenous and high throughput.

Determination of Cytokines Present in a CAR-T Co-Culture Environment by AlphaLISA and HTRF Technologies

While fundamental knowledge about tumor immunology has exploded recently, a new therapeutic approach to cancer is taking off: immunotherapy. Instead of directly attacking tumor cells, the idea is to help the immune system recognize and destroy them.

The use of CAR-T cells (Chimeric Antigen Receptor-T Cells), a new avenue of immunotherapy, consists in genetically modifying the patient's immune cells to arm them against a tumor. Concretely, T lymphocytes are taken from the patient's blood and modified in vitro. This leads to their expression of specific surface receptors, which recognize a tumor antigen. Once modified, these CAR-T cells are multiplied and re-injected into the patient's body in large quantities. There they go on to destroy cancer cells after binding to the tumor antigen, releasing a mixture of cytokines and pro-inflammatory chemokines.

This application note focuses on detecting cytokine and chemokine secretion using two orthogonal no-wash immunoassays, AlphaLISA® and HTRF®, in an in vitro co-culture model with CAR-T cells and CD19 positive Raji cells targeting tumors.

Effects of 5FU and Sorafenib on Proliferation and Biomarker Expression in a Colorectal Cancer Model Using AlphaLISA and EnSight Solutions

A variety of chemotherapeutic drugs with different modes of action have been developed and tested as potential therapies for colorectal cancer. Characterizing the effects of potential drugs with different modes of action is a key part of the process.

In this application note you will learn:

  • How to rapidly measure multiple biomarkers in both cell culture supernatant and lysates from the same wells of a microplate to examine complex protein expression profiles from a colorectal cancer cellular model
  • Benefits of using AlphaLISA® technology for characterizing the effects of potential drugs with different modes of action on a cell culture model of human colorectal cancer
  • How to measure the effects of drug treatments, such as 5FU and Sorafenib, on cellular proliferation by automated well-imaging and cell counting using the EnSight® multimode plate reader
  • Examples of the data and analysis you can generate for such biomarker and proliferation assays

Rapid No Wash Assays for Characterizing a Mouse TIGIT/ PD-L1 Bispecific Antibody

Technical advancements in antibody engineering has brought about greater interest in more novel antibody therapeutic design and the emergence of new classes of antibody therapeutics called bispecific antibodies (bsAbs). The principle behind bispecific antibody design is to create an antibody / antibody fragment to two or more binding sites to help with the treatment of complex diseases.

As more bsAbs are produced as therapeutics, fast and accurate methods for functionally evaluating and characterizing the stability of these antibodies are necessary during both discovery and development stages, as well as during formulation and quality analysis.

In this application note, we demonstrate how AlphaLISA® assay technology with the EnVision® multimode plate reader can be used for bispecific antibody detection, through an example application to characterize the binding and specificity of a mouse bispecific antibody targeting mouse TIGIT and mouse PD-L1.

You will find out:

  • What bispecific antibodies are and how they differ from classical antibody formats
  • How to design quick and easy experiments to measure binding of the bispecific antibody to the target proteins
  • How a no-wash multiplex assay can show direct binding of each site to its respective target simultaneously in one well
  • How these assays could be used to evaluate the stability and functional reproducibility between batches of the bsAb preparations

Soluble PD-L1 Detection in Cellular Supernatants Using AlphaLISA

When PD-1, which is expressed on the T cell, binds to PD-L1 expressed on the tumor cell, the T cell response is suppressed. Utilization of this pathway leads to tumor immune escape and promotes tumor cell growth. In fact, PD-L1 expression increases with tumor severity in many types of cancer. Release of a soluble form of PD-L1 (sPD-L1) into circulation is one mechanism that tumors may use to evade the immune response; however, it is unclear whether sPD-L1 can bind PD-1 and deliver an inhibitory signal. Previous studies have shown that soluble forms of PD-L1 have been detected in supernatants of cancer cell lines.

Traditional methods for assessing soluble and membrane-associated PD-L1 are wash-based ELISA assays, which typically require 5-6 hours of assay time. AlphaLISA® technology provides a rapid, no-wash bead-based alternative to traditional ELISAs. In this Application Note, we demonstrate how AlphaLISA is used to detect the presence of PD-L1.

Tracking Inflammasome Activity via Measuring IL-1β levels with AlphaLISA and HTRF

It has been suggested that inflammation promotes malignancy via proinflammatory cytokines, such as IL-1ß, which enhance immune suppression through the induction of myeloid suppressor cells (MSC), thereby counteracting immune surveillance and allowing the outgrowth and proliferation of malignant cells.

While there are multiple immunoassay options to choose from including ELISA, this application note demonstrates the utility of AlphaLISA® and HTRF® for the detection of IL-1ß in cell supernatant and serum samples.


Technical Note

Development of an AlphaLISA Assay to Measure and Screen Inhibitors of the p53-MDM2 Interaction

Binding events between biomolecules are important components of biological processes and a number of these biomolecular interactions have been targeted for the development of novel therapeutic drugs. p53 is a transcription factor and tumor suppressor protein that is activated in response to cellular stress, and MDM2 was identified as a negative regulator that binds to p53 and tags it for ubiquitination and subsequent degradation.

The p53-MDM2 protein-protein interaction has been an excellent target for therapeutic drugs and therefore makes a good model system for developing an AlphaLISA assay to screen for inhibitors of the interaction. In this technical note, we show how to develop an assay to screen for inhibitors and how to measure a dissociation constant for moderate binding protein-protein interaction using AlphaLISA®.

Quantifying TNFR1 in Both Soluble and Membrane Bound Form Using AlphaLISA Technology

Tumor Necrosis Factors (TNFs) are cytokines that are the primary modifiers of inflammatory and immune response. Researchers have shown that a soluble form of TNFR1 (sTNFR1) is a truncated version of the receptor produced by the disintegration and extracellular release of membranous protein on the cell surface (ectodomain shedding). sTNFR1 is found in healthy and diseased patients alike, however increased sTNFR1 levels are an indicator for disease states such as inflammation, infection, and asthma.

Here we present a way to measure TNFR1 using homogeneous bead-based AlphaLISA assay. The human TNFR1 AlphaLISA® detection kit was designed for the quantitative determination of soluble TNFR1 in serum and cell culture media. This technical note further demonstrates the functionality of the kit by detecting sTNFR1 in cell supernatant as well as TNFR1 on the cell membrane.

PDF 356 KB