

SILICON PHOTODIODE VTP8840BTRH

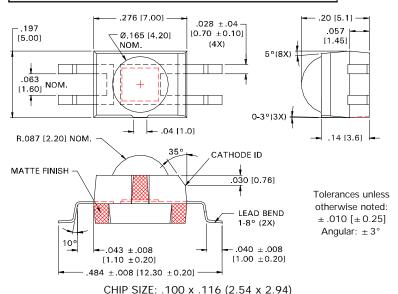
FEATURES

- Surface mount package
- Low capacitance
- Fast response
- High shunt impedance
- Tape & reel supplied

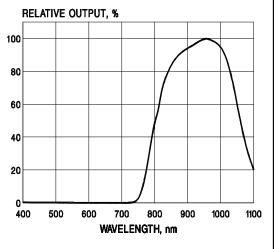
PRODUCT DESCRIPTION

This planar silicon photodiode features a lensed, visible blocking, IR transmitting package suitable for surface mount assembly in a "back mounted" (lens up) orientation.

These photodiodes exhibit performance characteristics which make them suitable for a wide range of near-IR sensing applications. Devices are shipped taped & reeled on a 24 mm embossed carrier.


ELECTRO-OPTICAL CHARACTERISTICS @ 25° C

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS
SHORT CIRCUIT CURRENT @ 100 fc, 2850 K	Isc	50	60		μΑ
DARK CURRENT @ V _R = 10 V	ΙD			20	nA
SHUNT RESISTANCE @ H = 0, V = 10 mV	Rsh		0.25		GΩ
JUNCTION CAPACITANCE @ V _R = 3 V	CJ			50	pF
OPEN CIRCUIT VOLTAGE @ 100 fc, 2850 K	Voc	325			mV
ANGULAR RESPONSE (50% RESPONSE POINT)	$\theta_{1/2}$		±42		Degrees


PACKAGE DIMENSIONS inch (mm)

RoHS Compliant

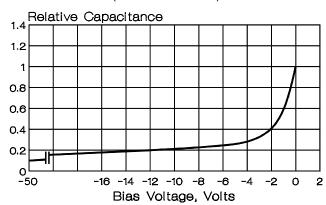
TYPICAL SPECTRAL RESPONSE

VIP8840BIRDS Rev. A

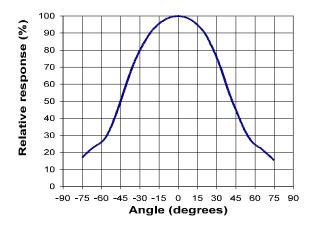
090

EXPOSED ACTIVE AREA: .0082 in2 (5.269 mm2)

GENERAL CHARACTERISTICS


PARAMETER	SYMBOL	TYPICAL RATING	UNITS
PEAK SPECTRAL RESPONSE @ 25°C	λ_{P}	925	nm
RADIOMETRIC SENSITIVITY @ PEAK, 25°C	S _{RPK}	0.6	A / W
NOISE EQUIVALENT POWER	NEP	2.0 x 10 ⁻¹³	W/ √Hz
SPECIFIC DETECTIVITY	D*	1.2 x 10 ¹²	cm √Hz /W
TEMPERATURE COEFFICIENT SHORT CIRCUIT CURRENT @ 2850 K SOURCE OPEN CIRCUIT VOLTAGE @ 2850 K SOURCE DARK CURRENT	TC Isc TC Voc TC I _D	+0.22 - 2.0 +15.0	%/°C mV/ C %/°C

ABSOLUTE MAXIMUM RATINGS


PARAMETER	SYMBOL	RATING	UNITS
TEMPERATURE RANGE OPERATING AND STORAGE	T _{AMB}	- 40 to +85	°C
LEAD SOLDER TEMPERATURE (1.6 mm FROM CASE, 5 SECONDS MAX.)	TLS	260°	°C
BREAKDOWN VOLTAGE @ 25°C	V_{BR}	33	Volts
POWER DISSIPATION	P _D	150	mW

TYPICAL CHARACTERISTIC CURVES

RELATIVE JUNCTION CAPACITANCE vs BIAS VOLTAGE (REFERRED TO ZERO BIAS)

ANGULAR RESPONSE

Specifications subject to change without prior notice. Information supplied by PerkinElmer Optoelectronics is believed to be reliable, however, no responsibility is assumed for possible inaccuracies or omissions. The user should determine the suitability of this product in his own application. No patent rights are granted to any devices or circuits described herein.

