L-3,5,3’-[125I]-Triiodothyronine

\[\text{[125I]}-T_3 \]

Product Number: NEX110X

LOT SPECIFIC INFORMATION:

CALCULATED AS OF: 15-Feb-2016

LOT NUMBER: AS32560

SPECIFIC ACTIVITY:
- 81.4 TBq/mmol
- 2200 Ci/mmol
- 125 MBq/µg
- 3390 µCi/µg

CONCENTRATION:
- 12.8 MBq/ml
- 345 µCi/ml

RADIOCHEMICAL PURITY: \(\geq 95\% \)

MOLECULAR WEIGHT: 649

PACKAGING: L-3,5,3’-[125I]-Triiodothyronine is in a solution containing 1-propanol:water, 1:1. It is shipped ambient.

SPECIAL INFORMATION: This compound is light sensitive. Exposure to light may hasten decomposition. L-3,5,3’-[125I]-Triiodothyronine is supplied in a red NENSURE™ vial which contains a U.V. inhibitor.

STABILITY AND STORAGE: L-3,5,3’-[125I]-Triiodothyronine should be stored at 4°C or lower in the dark. Under these conditions the product is stable and usable for at least six weeks after fresh lot date.

SPECIFIC ACTIVITY: The initial specific activity of L-3,5,3’-[125I]-Triiodothyronine is 2200 Ci/mmol, (81 TBq/mmol), 3390 µCi/µg (125 MBq/µg). Preparative HPLC is used to separate unlabeled 3,5-diiodo-1-thyronine from L-3,5,3’-[125I]-Triiodothyronine. Upon decay, L-3,5,3’-[125I]-Triiodothyronine undergoes decay catastrophe and the specific activity remains constant with time. However, it is not known what molecular fragments are generated from the decay event or what functional activity these fragments may have in different assays. References on 125I decay and decay catastrophe of 125I labeled compounds are available.1-5
RADIOCHEMICAL PURITY: Initially greater than 95% radiochemically pure as determined by HPLC.

PREPARATIVE PROCEDURE: L-3,5-Diiodothyronine is radioiodinated with no carrier added 125I using a modification of the Hunter and Greenwood method\(^1\) and is purified by reversed phase HPLC.

AVAILABILITY: L-3,5,3’-125I-Triiodothyronine is routinely available from stock and is prepared fresh and packaged for shipment on the third Monday of each month. Please inquire for larger package sizes.

HAZARD WARNING: This product contains a chemical(s) known to the state of California to cause cancer. This product also contains a component which is harmful by contact, ingestion or inhalation. It is irritating to the eyes, skin and respiratory tract. It is toxic and flammable. Target organs are the eyes, central nervous system, kidneys and the liver.

RADIATION UNSHIELDED: 280mR/hr/mCi at vial surface.

REFERENCES:

IODINE-125 DECAY CHART HALF LIFE=60 days

Radiations: Gamma 35.5 keV (7%), X-ray K alpha 27 KeV (112%), K beta 31 keV (24%)

<table>
<thead>
<tr>
<th>DAYS</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000</td>
<td>.977</td>
<td>.955</td>
<td>.933</td>
<td>.912</td>
<td>.891</td>
<td>.871</td>
<td>.851</td>
<td>.831</td>
<td>.812</td>
</tr>
<tr>
<td>20</td>
<td>.794</td>
<td>.776</td>
<td>.758</td>
<td>.741</td>
<td>.724</td>
<td>.707</td>
<td>.691</td>
<td>.675</td>
<td>.660</td>
<td>.645</td>
</tr>
<tr>
<td>40</td>
<td>.630</td>
<td>.616</td>
<td>.602</td>
<td>.588</td>
<td>.574</td>
<td>.561</td>
<td>.548</td>
<td>.536</td>
<td>.524</td>
<td>.512</td>
</tr>
<tr>
<td>80</td>
<td>.397</td>
<td>.388</td>
<td>.379</td>
<td>.370</td>
<td>.362</td>
<td>.354</td>
<td>.345</td>
<td>.338</td>
<td>.330</td>
<td>.322</td>
</tr>
<tr>
<td>100</td>
<td>.315</td>
<td>.308</td>
<td>.301</td>
<td>.294</td>
<td>.287</td>
<td>.281</td>
<td>.274</td>
<td>.268</td>
<td>.262</td>
<td>.256</td>
</tr>
<tr>
<td>120</td>
<td>.250</td>
<td>.244</td>
<td>.239</td>
<td>.233</td>
<td>.228</td>
<td>.223</td>
<td>.218</td>
<td>.213</td>
<td>.208</td>
<td>.203</td>
</tr>
</tbody>
</table>

To obtain the correct radioactive concentration or amount for a date before the calibration date: divide by the decay factor corresponding to the number of days before the calibration date. To obtain the correct radioactive concentration or amount for a date after the calibration date: multiply by the decay factor corresponding to the number of days after the calibration date.