Research Use Only. Not for use in diagnostic procedures. # 2' Deoxycytidine 5'-Triphosphate, [α⁻³²P]- **Product Number: NEG513H** ## LOT SPECIFIC INFORMATION Lot Number: <u>11289</u> Specific Activity: ____3000 Ci/mmol ___<u>111</u> TBq/mmol Concentration: ____10 __ mCi/ml ___<u>370</u>___ MBq/ml ____3.33 µM Calibration Date: ____7-Dec-2019_ **PACKAGING:** 10.0mCi/ml (370 MBq/ml) on the Calibration Date in a 50mM Tricine pH 7.6 solution containing a stabilizer. * A green dye is added as a visual aid for pipeting. The product is shipped ambient in a lead container. **STABILITY AND STORAGE:** 2' Deoxycytidine 5'-Triphosphate, $[\alpha - ^{32}P]$ - should be stored at 4°C or below in its original solvent and at its original concentration. Lot to lot variation may occur, and it is advisable to check purity prior to use. This product will undergo decomposition if left at room temperature for long periods. It is recommended that the product remain on ice while in use. Pre-mixing and aliquoting the product is recommended. **HAZARD INFORMATION:** WARNING: This product contains a chemical known to the state of California to cause cancer. #### **QUALITY CONTROL:** **Radiochemical Purity**: This lot was initially found to be >95% when determined by the following analytical HPLC method using a C-18 column. Elution is isocratic by a mixture of 70% Solvent A (20mM potassium phosphate, 20mM phosphoric acid containing 10mM tetrabutylammonium hydroxide) and Solvent B (30% methanol). The radiochemical purity is usually greater than 99% when purified. **Isotopic Purity:** All lots of ³²P are typically > 99.9% pure. **Biological Testing:** Random Hexamer Priming Assay * U.S. Patent # 5,738,836 **PREPARATIVE PROCEDURE:** Each lot has been purified by HPLC using an anion exchange resin eluting with Triethylammoniumbicarbonate. The purified nucleotide will be in the triethylammonium salt form. Consistently high quality – Synthesized, diluted, and packaged using state of the art automation. **SAFE HANDLING:** Film badges should be used by all personnel working with ³²P. If millicurie quantities are manipulated, finger badges are recommended. Acrylic plastic (1/4 inch) is the recommended shielding for working with quantities of ³²P up to 10mCi. A radiation protection specialist should be consulted for specific applications. Whenever working with ³²P on the open bench, the eyes should be shielded with approved safety glasses. **DISPOSAL:** Hold for decay; specific regulations should be addressed with your radiation safety officer. **SPECIAL INFORMATION:** Visit <u>www.perkinelmer.com/toolkit</u> to use our online Radioactive Decay Calculator. #### **Specific Activity Before Calibration Date** The specific activity is specified <u>as of the calibration date</u>. This must be taken into consideration when calculating concentration in mass-dependent applications. The specific activity on any day <u>prior</u> to the calibration date can be calculated using the formula: $$SA = \frac{SA \text{ cal.}}{D_F + \frac{SA \text{ cal. } (1-D_F)}{SA \text{ Theo}}}$$ ### **Specific Activity After Calibration Date** The specific activity on any day after the calibration date can be calculated using the formula: $$SA = \frac{D_F}{\frac{1}{SA \text{ cal.}} - \frac{(1-D_F)}{SA \text{ Theo}}}$$ Where: SA = Specific Activity expressed as Ci/mmol SA cal = Specific Activity on the calibration date. D_F = Fraction of current radioactivity that will remain on the calibration date (from the decay chart) For example, for a date 8 days prior to the calibration date $D_F = 0.678$. SA Theo = 9120 Ci/mmol for the theoretical specific activity of carrier free ³²P. ## PHOSPHORUS-32 DECAY TABLE HALF LIFE= 14.3 DAYS | days | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 0 | 1.000 | 0.953 | 0.906 | 0.865 | 0.824 | 0.785 | 0.748 | 0.712 | 0.678 | 0.646 | | 10 | 0.616 | 0.587 | 0.559 | 0.532 | 0.507 | 0.483 | 0.460 | 0.436 | 0.418 | 0.396 | | 20 | 0.379 | 0.361 | 0.344 | 0.328 | 0.312 | 0.297 | 0.283 | 0.270 | 0.257 | 0.245 | | 30 | 0.233 | 0.222 | 0.212 | 0.202 | 0.192 | 0.183 | 0.174 | 0.166 | 0.158 | 0.151 | | 40 | 0.144 | 0.137 | 0.130 | 0.124 | 0.118 | 0.113 | 0.107 | 0.102 | 0.096 | 0.093 | | 50 | 0.088 | 0.084 | 0.080 | 0.077 | 0.073 | 0.069 | 0.066 | 0.063 | 0.060 | 0.057 | | 60 | 0.054 | 0.052 | 0.049 | 0.047 | 0.045 | 0.043 | 0.041 | 0.039 | 0.037 | 0.035 | To use the decay table above, find the number of days in the top and left hand columns of the chart, then find the corresponding decay factor. To obtain a precalibration number, divide by the decay factor. For a postcalibration number, multiply by the decay factor.