check quantity

CytoStar-T 96-well plate, 100 plates

96-well clear-bottom, scintillating microplate for cell-based radiometric proximity assays.

Please enter valid quantity

Please login to add favorites


Product Number List Price Your Price Quantity
RPNQ0163 7100.00 USD

You successfully added item(s) to your cart


The CytoStar-T scintillating microplate is treated for the growth of tissue culture cells. The microplates are made sterile by gamma-irradiation and treated for adherence of cells by plasma discharge which renders the cell attachment surface hydrophilic. The tissue culture surface is not a coating but rather a stably modified surface with random functional groups covalently bound. The lid has condensation rings that reduce the risk of well-to-well contamination and at the same time reduces evaporation from individual wells, minimizing the potential for "edge effects".

CytoStar-Tâ„¢ scintillating microplates are designed for non-invasive quantitation in real-time analysis of a wide spectrum of biological reactions in cells under normal physiological conditions. Analyses include cell adhesion, cell signaling (e.g., receptor-ligand binding), cell motility, cell proliferation, normal cellular metabolism, metabolite transport, as well as drug processing (intake and efflux). The technology, which was first developed in 96-well plate format, but is now available in 384-well plate format in response to the increased demand for a higher throughput solution. CytoStar-T scintillating microplates conform to SBS-standards in both the 96-well and 384-well formats. They are sterile, tissue culture treated microplates designed not only for the growth of adherent but also suspension cell cultures (after plate centrifugation or cells settle). The integral, planar, transparent base of each well is composed of a proprietary homogeneous mixture of scintillants and polystyrene. The transparent nature of the base permits the observation of growth of cells plated in the well. Furthermore, radioisotopes having suitable decay characteristics (3H, 14C, 35S, 33P, 45Ca, 125I), brought into proximity with the scintillant contained within the base by virtue of the biological processes within the cells, will have that radioactive decay converted to a light signal. This blue light signal can then be detected and quantified using a PMT-based radiometric detection instrument, like PerkinElmer's MicroBeta2. The amount of light generated is proportional to the amount of radioisotope within, or associated with, the cells.

Coating Treatment Scintillant, TC-treated, Sterile
Detection Method Radiometric
One Unit Contains 100 plates
Product Brand Name CytoStar-T
Shipping Condition Ambient
Wells Number 96 well plate