

Test Catalog for Clinicians

Newborn Screening 2	
Biochemical Genetic Testing 2	
Molecular Genetic Testing 4	
Genetic Testing	
Molecular Genetic Testing 5	
Biochemical Genetic Testing7	
How to order?	•

Fatty Acid Oxidation Disorders

Carnitine/Acylcarnitine Translocase Deficiency Carnitine Palmitoyl Transferase Deficiency Type I1 3-Hydroxy Long Chain Acyl-CoA Dehydrogenase Deficiency 2,4-Dienoyl-CoA Reductase Deficiency1 Medium Chain Acyl-CoA Dehydrogenase Deficiency Multiple Acyl-CoA Dehydrogenase Deficiency Neonatal Carnitine Palmitoyl Transferase Deficiency Type II Short Chain Acyl-CoA Dehydrogenase Deficiency Short Chain Hydroxy Acyl-CoA Dehydrogenase Deficiency Trifunctional Protein Deficiency Very Long Chain Acyl-CoA Dehydrogenase Deficiency

Organic Acid Disorders

3-Hydroxy-3-Methylglutaryl-CoA Lyase Deficiency Glutaric Acidemia Type I
Isobutyryl-CoA Dehydrogenase Deficiency
Isovaleric Acidemia
2-Methylbutyryl-CoA Dehydrogenase Deficiency
3-Methylcrotonyl-CoA Carboxylase Deficiency
3-Methylglutaconyl-CoA Hydratase Deficiency
Methylmalonic Acidemias
Methylmalonyl-CoA Mutase Deficiency
Some Adenosylcobalamin Synthesis Defects
Maternal Vitamin B12 Deficiency
Mitochondrial Acetoacetyl-CoA Thiolase Deficiency
Propionic Acidemia

Multiple CoA Carboxylase Deficiency Malonic Aciduria

Hyperalimentation Liver Disease Medium Chain Triglyceride Oil Administration Presence of EDTA Anticoagulants in blood specimen Treatment with Benzoate, Pyvalic Acid, or Valproic Acid Carnitine Uptake Deficiency

Endocrine Disorder

Other Observations

Congenital Adrenal Hyperplasia Salt Wasting 21-Hydroxylase Deficiency Simple Virilizing 21-Hydroxylase Deficiency Congenital Hypothyroidism

Other Disorder

Biotinidase Deficiency Complete Deficiency Partial Deficiency Glucose-6-Phosphate Dehydrogenase Deficiency Cystic Fibrosis (not valid after 90 days of age)* Galactosemia Galactosemia Galactokinase Deficiency Galactose-1-Phosphate Uridyltransferase Deficiency Galactose-4-Epimerase Deficiency Severe Combined Immunodeficiency (SCID)

Amino Acid Disorders

Argininemia Argininosuccinic Aciduria 5-Oxoprolinuria1 Carbamoyl Phosphate Synthetase Deficiency1 Citrullinemia Homocystinuria Hypermethioninemia Hyperammonemia, Hyperornithinemia, Homocitrullinuria Syndrome1 Hyperornithinemia with Gyral Atrophy1 Maple Syrup Urine Disease Phenylketonuria Classical/Hyperphenylalaninemia **Biopterin Cofactor Deficiencies** Tyrosinemia Transient Neonatal Tyrosinemia Tyrosinemia Type I2 Tyrosinemia Type II Tyrosinemia Type III

Hemoglobin Disorder

Sickle Cell & other Hemoglobinopathies Hemoglobin S, S/C, S/Beta-Thalassemia, C, & E Diseases

StepOne + SCID + LSDs

StepOne (Comp + SCID)

(All disorders listed above)

Lysosomal Storage Disorders (LSDs)

Fabry Gaucher Krabbé Disease Mucopolysaccharidosis Type I (MPS-I) Niemann-Pick A/B Pompe

StepOne + SCID + LSDs + X-ALD (full panel)

StepOne (Comp + SCID)

(All disorders listed above)

Lysosomal Storage Disorders (LSDs) Fabry

Gaucher Krabbé Disease Mucopolysaccharidosis Type I (MPS-I) Niemann-Pick A/B Pompe

X-Linked Adrenoleukodystrophy (X-ALD)

Newborn Screening > Biochemical Genetic Testing

LSDs Panel Only

Lysosomal Storage Disorders (LSDs)

Fabry Gaucher Krabbé Disease Mucopolysaccharidosis Type I (MPS-I) Niemann-Pick A/B Pompe

SCID only

X-ALD only

Specialty Testing

Post Mortem Screens

PKU Clinical Monitoring

Newborn Screening > Molecular Genetic Testing

Second Tier Reflex Testing Menu

PerkinElmer Genetics uses combinations of assays in a multi-tier approach that optimizes detection of abnormal results. Positive DNA identification for many disorders further speeds definitive diagnosis and implementation of critical therapies.

Biochemical Second Tier Testing	
Disorder	Testing Approach
Congenital Adrenal Hyperplasia	First Tier; 17-OH P Second Tier; Extracted 17-OH P on all elevated.
Congenital Hypothyroidism	First Tier; either T4 or TSH. Second Tier TSH with a primary T4.
Galactosemia	First Tier; Total Galactose plus quantitative Uridyltransferase. Second Tier; Fractionated Galactose.
DNA Second Tier Testing	
Disorder	Mutations Detected
Galactosemia	N314D (Duarte) Q188R, S135L, K285N, and L195P (Classical)
Hemoglobinopathies	Hb S (173A>T), Hb C (172G>A), Hb E (232G>A), Hb D (121G>C) and Hb O (121G>A) β Thalassaemias -29A>G, -88C>T, and IVS1+6T>C
Cystic Fibrosis	This chart contains the 23 mutations recommended by the ACOG/ACMG:

ΔF508	1717-1G>A	W1282X	2307insA
ΔΙ507	R560T	N1303K	Y1092X
G542X	R553X	394delTT	M1101K
G85E	G551D	Y122X	\$1255X
R117H	1898+1G>A	R347H	3876delA
621+1G>T	2184delA	V520F	3905insT
711+1G>T	2789+5G>A	А559Т	5/7/9т
1078delT	3120+1G>A	S549N	F508C
R334W	R1162X	S549R	I507V
R347P	3659delC	1898+5G>T	I506V
A455E	3849+10kbC>T	2183AA>G	

Newborn Screening > Molecular Genetic Testing

Second Tier Reflex Testing Menu

Disorder	Mutations Detected
Biotinidase Deficiency	G98:d7i3, Q456H, R157H, R538C, D252G and D444H; D444H;A171T, D444H; F403V, D444H;R157H
MCAD	A985A>G, 199T>C
LCHAD	1528G>C
Glutaric Acidemia 1	A421V (Amish) R402W (Caucasian)
Propionic Acidemia	E168K (Spanish) 1218del14/ins12 (Caucasian) 1170insT
Methylmalonic Acidemia	N219Y (Caucasian) G717V (African American)
3-Methylcrotonyl-CoA Carboxylase Def.	518insT (Mennonite)
Maple Syrup Urine Disease	Y438N (previously known as Y393N)
Isovaleric Acidemia	A282V

Disclaimer

The analyses conducted by PerkinElmer[®] Genetics produce results that can be used by qualified physicians in the diagnosis of disorders described herein. Evidence of these conditions will be detected in the vast majority of affected individuals; however, due to genetic variability, age of the patient at the time of specimen collection, quality of the specimen, health status of the patient, and other variables, such conditions may not be detected in all affected patients.

Genetic Testing > Molecular Genetic Testing

Clinical Whole Genome

Contact us on 1-866-463-6436 for details

Clinical Exome

Contact us on 1-866-463-6436 for details

NeoSeq (NGS)

Contact us on 1-866-463-6436 for details

LSD NGS panel (single gene or full panel sequencing)

Fabry GLA gene sequencing	Morquio syndrome type A (MPS IVA) <i>GALNS</i> gene sequencing	
Gaucher GBA gene sequencing		
Pompe GAA gene sequencing	Beta-1 Galactosidase (Morquio syndrome type B, MPS IVB) <i>GLB1</i> gene sequencing	
Krabbe GALC gene sequencing	Maroteaux-Lamy (MPS-VI) ARSB gene	
Niemann-Pick A/B SMPD1 gene sequencing		
Hurler Syndrome (MPS-I) <i>IDUA</i> gene sequencing	Mucopolysaccharidosis VII GUSB gene sequencing	
Hunter syndrome (MPS-II) <i>IDS</i> gene sequencing		

Disclaimer

The analyses conducted by PerkinElmer[®] Genetics produce results that can be used by qualified physicians in the diagnosis of disorders described herein. Evidence of these conditions will be detected in the vast majority of affected individuals; however, due to genetic variability, age of the patient at the time of specimen collection, quality of the specimen, health status of the patient, and other variables, such conditions may not be detected in all affected patients.

StepOne[®] (Comp + SCID)

Fatty Acid Oxidation Disorders

Carnitine/Acylcarnitine Translocase Deficiency Carnitine Palmitoyl Transferase Deficiency Type I1 3-Hydroxy Long Chain Acyl-CoA Dehydrogenase Deficiency 2,4-Dienoyl-CoA Reductase Deficiency1 Medium Chain Acyl-CoA Dehydrogenase Deficiency Multiple Acyl-CoA Dehydrogenase Deficiency Neonatal Carnitine Palmitoyl Transferase Deficiency Type II Short Chain Acyl-CoA Dehydrogenase Deficiency Short Chain Hydroxy Acyl-CoA Dehydrogenase Deficiency Trifunctional Protein Deficiency Very Long Chain Acyl-CoA Dehydrogenase Deficiency

Organic Acid Disorders

3-Hydroxy-3-Methylglutaryl-CoA Lyase Deficiency Glutaric Acidemia Type I
Isobutyryl-CoA Dehydrogenase Deficiency
Isovaleric Acidemia
2-Methylbutyryl-CoA Dehydrogenase Deficiency
3-Methylcrotonyl-CoA Carboxylase Deficiency
3-Methylglutaconyl-CoA Hydratase Deficiency
Methylmalonic Acidemias
Methylmalonic Acidemias
Methylmalonyl-CoA Mutase Deficiency
Some Adenosylcobalamin Synthesis Defects
Maternal Vitamin B12 Deficiency
Mitochondrial Acetoacetyl-CoA Thiolase Deficiency
Propionic Acidemia

Propionic Acidemia Multiple CoA Carboxylase Deficiency Malonic Aciduria

Other Observations

Hyperalimentation Liver Disease Medium Chain Triglyceride Oil Administration Presence of EDTA Anticoagulants in blood specimen Treatment with Benzoate, Pyvalic Acid, or Valproic Acid Carnitine Uptake Deficiency

Endocrine Disorder

Congenital Adrenal Hyperplasia Salt Wasting 21-Hydroxylase Deficiency Simple Virilizing 21-Hydroxylase Deficiency Congenital Hypothyroidism

X-ALD only

X-Linked Adrenoleukodystrophy (X-ALD)

Other Disorder

Biotinidase Deficiency Complete Deficiency Partial Deficiency Glucose-6-Phosphate Dehydrogenase Deficiency Cystic Fibrosis (not valid after 90 days of age)* Galactosemia Galactosemia Galactokinase Deficiency Galactose-1-Phosphate Uridyltransferase Deficiency Galactose-4-Epimerase Deficiency Severe Combined Immunodeficiency (SCID)

Amino Acid Disorders

Argininemia Argininosuccinic Aciduria 5-Oxoprolinuria1 Carbamoyl Phosphate Synthetase Deficiency1 Citrullinemia Homocystinuria Hypermethioninemia Hyperammonemia, Hyperornithinemia, Homocitrullinuria Syndrome1 Hyperornithinemia with Gyral Atrophy1 Maple Syrup Urine Disease Phenylketonuria Classical/Hyperphenylalaninemia **Biopterin Cofactor Deficiencies** Tyrosinemia Transient Neonatal Tyrosinemia Tyrosinemia Type I2 Tyrosinemia Type II Tyrosinemia Type III

Hemoglobin Disorder

Sickle Cell & other Hemoglobinopathies Hemoglobin S, S/C, S/Beta-Thalassemia, C, & E Diseases

Disclaimer

The analyses conducted by PerkinElmer[®] Genetics produce results that can be used by qualified physicians in the diagnosis of disorders described herein. Evidence of these conditions will be detected in the vast majority of affected individuals; however, due to genetic variability, age of the patient at the time of specimen collection, quality of the specimen, health status of the patient, and other variables, such conditions may not be detected in all affected patients.

Ordering - Clinicians

In this section, you can learn more about our testing services:

Step-1: Select the list of disorders from list above

Step-2: Download our test requisition form

Step-3: Call us on 1-866-463-6436 to obtain sample collection material

More about Newborn Screening services

Testing Services

PerkinElmer Genetics offers several comprehensive newborn screening panels as well as Specialty Testing, Post Mortem and DNA Carrier Screening.

PerkinElmer Genetics has made numerous innovations resulting from the efforts of the laboratory's dedicated professionals which include: the advent of tandem mass spectrometry; the use of DNA technologies as both primary and secondary means of disease detection; the advent of unique testing algorithms to improve the accuracy of newborn screening; and the development and implementation of screening assays for Severe Combined Immunodeficiency (SCID) and Lysosomal Storage Disorders (LSD).

New Service Offering

PerkinElmer Genetics is positioned to offer three new disorders that were added to the Recommended Uniform Screening Panel (RUSP). Pompe disease was added in March 2015 followed by Mucopolysaccharidosis Type 1 (MPS-1 or Hurler Syndrome) and X-linked Adrenoleukodystrophy (X-ALD) in February 2016.

Severe Combined Immunodeficiency (SCID)

Severe Combined Immunodeficiency (SCID) is a group of disorders characterized by the absence of both humoral and cellular immunity. The defining characteristic for SCID is always a severe defect in T-cell production and function, with defects in B-lymphocytes as a primary or secondary problem and, in some genetic types, in natural killer (NK) cell production as well.

SCID screening is available as stand-alone testing or included in our StepOne Comprehensive + SCID panel.

Lysosomal Storage Disorders (LSDs) (click to download sell sheet)

PerkinElmer Genetics offers screening for six (6) Lysosomal Storage Disorders (LSD); Fabry, Gaucher, Krabbe Disease, Mucopolysaccharidosis Type I (MPS-1), Niemann-Pick A/B and Pompe. Lysosomal storage disorders develop as a result of an enzyme deficiency or malfunction that causes cell waste to build up within the cell instead of being excreted.

LSD screening is available as stand-alone testing or included in our StepOne Comprehensive + SCID + LSD panel.

X-Linked Adrenoleukodystrophy (X-ALD) (click to download sell sheet)

X-ALD is a serious progressive genetic disorder caused by an abnormality in the ABCD1 gene on the X chromosome and affects roughly one out of every 17,000 to 20,000 births.

X-ALD screening is available as stand-alone testing or included in our StepOne Comprehensive +SCID + LSD + X-ALD panel.

If you have questions on our testing services please contact Client Services.

Normal Business Hours

Client Services Department Monday thru Friday 8 AM Eastern to 5 PM Eastern Phone: 1-412-220-2300 Toll Free: 1-866-463-6436 Fax: 1-412-220-0784 <u>Contact us via web form</u>

How to order?

Results

Results

PerkinElmer Genetics' laboratory works collaboratively with clinicians providing accurate and timely test results necessary for quality care of patients. PerkinElmer Genetics receives samples 6 days a week – Monday through Saturday (excluding courier holidays). Testing occurs 7 days per week. The Genetic Counseling Staff is available 24 hours per day, 7 days per week to facilitate short-term follow-up, communication and education to health care providers worldwide.

Click here to visit Results center

To obtain an ID to download results from our secure portal, please contact Client Services to obtain the appropriate form.

Disclaimer

The analyses conducted by PerkinElmer[®] Genetics produce results that can be used by qualified physicians in the diagnosis of disorders described herein. Evidence of these conditions will be detected in the vast majority of affected individuals; however, due to genetic variability, age of the patient at the time of specimen collection, quality of the specimen, health status of the patient, and other variables, such conditions may not be detected in all affected patients.