Light-producing microbes on the ASK

lumin2.jpg

Overview


Infectious disease is a perennially important area in both life science research and drug discovery. Our bioluminescent infectious disease light-producing microorganisms have been developed to mimic both acute and chronic standard infection in animal models presently used by researchers in areas such as lung, sepsis, meningitis, GI, and biofilm infections. When imaged with a PerkinElmer IVIS® Imaging System, the course of infection can be monitored non-invasively in vivo as the bacteria expand and migrate to different tissues in the animal by imaging the bioluminescent signal detected from infection sites within the animal. No exogenous substrates (such as luciferin) are required. Anti-infective drugs may then be used to treat the infections and their effectiveness can be determined by measuring changes in the bioluminescent signal.

PerkinElmer offers a range of Gram-positive and Gram-negative pathogenic bacteria expressing bacterial luciferase (lux), which can be used for in vitro and in vivo studies. These bioluminescent microorganisms have been shown to work in a variety of acute and chronic infection models including pneumonia, meningitis, sepsis and biofilm infections.


Bioluminescent gram-positive and gram-negative bacteria


BacteriumParental strainCat. No.
E. coliEPEC WS2572119223
L. monocytogenesATCC 23074119237
10403S (serotype 1/2a wild-type strain)119238
P. aeruginosaATCC 19660119228
PAO1119229
P. mirabilisATCC 51286119236
S. aureus8325-4119239
ATCC 12600119240
ATCC 33591119242
ATCC 49525119243
UAMS-1119244
S. dysenteriae88A6205 (clinical isolate)119231
S. typhimuriumFDA1189119235
Y. enterocolitica91A1854 (clinical isolate)119232
WS2589119233


Culturing protocols


Bacteria should be cultured according to the product tech data sheet. Bacteria are harvested by centrifugation and washed twice with phosphate-buffered saline (PBS) solution before resuspending at the desired concentration for injection or other introduction into the mouse. Typical growth curve information as measured by absorbance at 600 nm is provided on product-specific tech data sheets.


Experimental development


Because our bioluminescent bacteria can be used for real-time, non-invasive imaging, the following two optimizations can be performed using one set of mice.

  • Titration of bacterial inocula required to produce or maintain infection. In this initial experiment, mice are infected with different dilutions of bacteria, and the progress of infection is followed over time. Typically, a 10X dilution series is set up.  For example, a serial dilution ranging from 1 x 109 to 1 x 102 colony forming units per mouse (cfu/mouse) might be tested. Most commonly, mice are anesthetized and an intraperitoneal injection of bacteria is used to initiate infection. It is also possible to introduce the bacteria by other methods, including intranasal application and surgical techniques.
  • Time course of infection. The goal of this study is to demonstrate peak signal at the host site-of-interest, and to ensure infection is maintained at sufficient detection level throughout the required experimental time-frame.


Citations


Visit our PerkinElmer Citations Library to find references for the use of our bioluminescent microorganisms in various applications.

Selected citations:

  1. Wiles, S., Robertson, B. D., Frankel, G. & Kerton, A. Bioluminescent monitoring of in vivo colonization and clearance dynamics by light-emitting bacteria. Methods Mol. Biol. 574, 137–153 (2009). Link
  2. Marra, A. "A Review of Animal Models Used for Antibiotic Evaluation" in Antibiotic Discovery and Development (Dougherty, T. J. & Pucci, M. J.) 1009–1033 (Springer US, 2012). 
  3. Kadurugamuwa, J. L. et al. Rapid direct method for monitoring antibiotics in a mouse model of bacterial biofilm infection. Antimicrob. Agents Chemother. 47, 3130–3137 (2003). Link
  4. Kadurugamuwa, J. L. et al. Noninvasive monitoring of pneumococcal meningitis and evaluation of treatment efficacy in an experimental mouse model. Mol Imaging 4, 137–142 (2005). Link
  5. Kadurugamuwa, J. L. et al. Noninvasive biophotonic imaging for monitoring of catheter-associated urinary tract infections and therapy in mice. Infect. Immun. 73, 3878–3887 (2005). Link