Uncover deep biological understanding in your everyday assays and innovative applications using the Operetta CLS™ high-content analysis system. Featuring a unique combination of technologies, the system delivers all the speed, sensitivity and resolution you need to reveal fine sub-cellular details. And with our simple, powerful Harmony 4.5 software, Operetta CLS™ lets you find even subtle phenotypic changes.
false falseYou successfully added item(s) to your cart
For research purposes only, not intended for diagnostic use
The Operetta CLS system combines speed and sensitivity with the powerful and intuitive data analysis you’ve come to trust from the Operetta platform. The all-new Operetta CLS delivers everything you need from high-content analysis. What’s more, the Operetta CLS system is part of our comprehensive HCS workflow – everything from HCS systems and microplates to automation and informatics for every application. All from one knowledgeable, trusted vendor. Put that together with our Harmony® high-content imaging and analysis software – the easy-to-learn, easy-to-use software that empowers biologists to do their own analysis – and you have everything you need to run your everyday (and complex) analyses right away.
A Unique Combination of Technologies
At the core of the Operetta CLS™ high-content analysis system is a new light path that ensures efficient excitation of your samples and careful collection of emitted signals.
A Solution Configured To Suit Every Need;
Whatever your application, there’s an Operetta CLS™ system configured to meet your requirements. And it’s modular, so it can change with your research demands. Several configuration options are available, Typical configurations include:
Operetta CLS™ Quattro
Operetta CLS™ FLEX
Operetta CLS™ LIVE
From everyday assays to more demanding applications, the Operetta CLS high-content analysis system delivers just the right combination of flexible excitation, sensitive optics, and advanced software features to enable you to gain deeper biological insight from all your critical applications.
Fixed-cell assays
Live-cell assays
Complex cellular models
Advanced assays
Phenotypic fingerprinting
21 CFR Part 11 Compatible | No |
---|---|
Automation Compatible | Yes |
Detection Method | Transmission, Fluorescence |
Height | 45.0 cm |
Imaging Modality | High Content |
Interface | Ethernet |
Length | 98.0 cm |
Light Source | LED |
Portable | No |
Product Brand Name | Operetta CLS |
Warranty | Yes |
Width | 66.0 cm |
Extracellular signal-regulated kinase (ERK) is a key component in the regulation of embryogenesis, cell differentiation, cell proliferation, and cell death. The ERK signaling pathway is altered in various cancer types and is frequently investigated as a target for therapeutic intervention. This application note describes how a live cell FRET assay to study ERK signaling was performed on the Operetta CLS™ high-content analysis system. The optimized design of the FRET-based biosensor, the high-quality imaging of the Operetta CLS system and the easy-to-use image analysis tools of the Harmony® software contribute to the robustness of the high-content assay.
In this application note, we describe a high-content screening application for analyzing the migration of non-small cell lung cancer cells in a live cell assay. Using the Operetta® high-content imaging system and digital phase contrast imaging, we tracked migrating cancer cells using automated single cell tracking in the Harmony® high-content imaging and analysis software.
The promise of high-content screening is the acceleration of discovery by extracting as much relevant information as possible from cells. Nevertheless, a large percentage of high-content screens analyze only a small number of image-based properties. As nearly all screening approaches require a nuclear counterstain to facilitate segmentation, phenotypic profiling of the nuclei can offer new and additional perspectives on assays at no extra cost. This study shows how a single nuclear stain can enable phenotypic profiling and how phenotypic profiles can be used to distinguish up to seven different cell types, without further staining or phenotypic markers. Such methods could be applied to other fluorescent labels, opening up new horizons for unbiased drug discovery and disease research.
Learn how a phenotypic screening assay to study time-dependent effects of endothelin-1-induced hypertrophy was set up using human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. Learn how: The Opera Phenix system has been applied in the field of neurodegenerative diseases. In this assay, the Opera Phenix system is 4 times faster than the previous Opera® system. Primary neuron morphology is analyzed in a straightforward approach using Harmony software. Careful assay optimization can increase throughput, and minimize the data burden, without compromising assay performance.
Download our brochure to learn how our solutions help you to grow, detect, and analyze 3D cell
Human induced pluripotent stem cells (iPSCs) offer tremendous opportunities for disease modeling and discovery of novel therapeutics. The UK-based Human Induced Pluripotent Stem Cell Initiative (HipSci) aims to advance iPSC technology and pave the way to discovering how genomic variation impacts cellular phenotype by offering the scientific community access to a vast panel of cell lines with thorough characterization and data analysis tools. This case study details a phenotypic screen used to characterize human iPSCs on diverse extracellular matrix substrates, and a method for the capture of specific phenotypes emerging upon cell-to-cell contact.
One of the greatest challenges in multiple sclerosis (MS) therapy is the halting or reversal of the failure of remyelination in the brain in order to reverse disabilities in MS patients. This case study highlights the recent work of Dr. Paul Tesar and colleagues at the Case Western Reserve University School of Medicine, which could potentially lead to such novel treatments, as it aims to control the function of stem cells in the body and thereby to help the body repair itself.
Infectious diseases remain a major burden to human health. The increased globalization of modern society that facilitates the spread of infectious diseases, and phenomena such as anti-microbial resistance, underscore the importance of the development of new preventative and therapeutic approaches. In our e-book, learn how high-content imaging and analysis plays a significant role in infectious disease research.
Whether you’re familiar with high-content screening, or a newcomer, you’ll need the right tools and strategies to overcome the challenges of using complex 3D cell models in such an assay. For example, growing consistent, reproducible 3D cultures can be problematic and imaging large, thick cell samples can be challenging, while managing the huge volumes of data generated is perhaps the most demanding aspect of all. In this article, we provide our top tips for running a successful high-content screening assay using a 3D cell model. Learn how you can: Generate uniform 3D cell models, Get the best quality images, Minimize imaging time and volume of data, Get deeper insights from your 3D cell model and Avoid unnecessary data transfer steps.
High-content assays using 3D objects such as cysts or organoids can be challenging from the perspectives of both image acquisition and image analysis. In this technical note we describe how to image and analyze epithelial Madin-Darby canine kidney (MDCK) cysts in 3D on the Operetta CLS™ high-content analysis system.
Download our technical note to find out how you can overcome some of the challenges associated with long-term live cell imaging. Learn how you can perform successful five-day live cell imaging on Operetta CLS™ and Opera Phenix™ high-content systems, avoid phototoxicity with gentle digital phase contrast imaging, and analyze cell growth and morphology on a single cell level without fluorescence staining.
Balancing the key factors in HCS imaging - sensitivity, resolution and speed - can be challenging since they cannot be optimized independently: changing one impacts the others. Nevertheless, there is a way to overcome some of the obstacles and here we explain why the choice of the objective lens is critical.