High throughput cell-based screening of TNF4 receptor inhibitors by homogeneous measurement of p38 MAP kinase phosphorylation

Michael F. Crouch, Andrea Brown, Anthony Dyer, Ronald I.W. Osmond

TGR BioSciences Pty Ltd, 31 Dalgleish St, Thebarton 5031, SA, Australia.
www.tgr-biosciences.com.au info@tgr-biosciences.com.au

INTRODUCTION

Tumour necrosis factor-α (TNFα) is a potent pro-inflammatory cytokine implicated in several autoimmune inflammatory diseases. For the therapies that have already been developed for the treatment of TNFα related diseases, subgroups of patients may experience significant side effects, indicating a need for further drug classes that target TNFα receptor signaling. Here we present a novel method for functional screening of TNFα Receptor 1 in a cell based format. Endogenous cellular p38 MAPK phosphorylation is measured as a functional readout of TNFα receptor 1 engagement in U937 cells.

The assay utilizes the SureFire™ p38 MAPK assay kit (TGR BioSciences), an AlphaScreen® (PerkinElmer®) based homogeneous detection technology. We show that TNFα stimulation of p38 MAPK is markedly reduced by pretreatment of cells with soluble TNFα Receptor 1, or with antibodies against either TNFα or the TNFα Receptor 1, mirroring the currently available therapies that specifically target TNFα action. In addition, the assay is insensitive to DMSO concentrations of up to 1%, allowing screening of large drug-like compound libraries for anti-TNFα activity. Screening in a cell based format allows for both functional assessment of inhibitors in a cellular environment as well as measurement of potency in the same assay.

RESULTS

Assay Sensitivity

Recombinant p38 MAPK was used to assess the minimum detectable amount of phosphorylated p38 MAPK using the SureFire™ assay. Under these conditions approximately 5 femtomole/well of p38 MAPK could be detected per well (approx 1nM solution), and the assay was linear between 2-200 nM, concentrations routinely expected in cell lysates.

Timecourse of p38 MAPK activation in U937 cells

U937 cells (5x10⁷) were plated into 384 well plates at a density of 1x10⁵ cells/mL. The cells were stimulated with 5 ng/mL TNFα (5 µL) for varying lengths of time prior to lysis. The cell lysates were analysed for phosphorylated p38 MAPK using the SureFire™ assay. The results suggest the phosphorylation maximum occurs between 20-30 min after stimulation. The mean of 3 independent experiments +/- standard deviation are plotted.

Specific p38 MAPK activation in response to TNFα in U937 cells

To ensure that p38 MAPK phosphorylation was a specific response to TNFα stimulation, the cells were stimulated with a range of TNFα concentrations, and lysed. The lysates were examined for p38 MAPK phosphorylation using the SureFire™ assay. The levels of phosphorylated p38 MAPK that were detected increased in a dose-responsive manner with the amount of TNFα stimulation, a response which was saturable at approximately 10 ng/mL TNFα.

Effect of DMSO on p38 MAPK activation in U937 cells

Small molecule libraries used in HTS programs are generally stored in DMSO, a compound that can have deleterious effects on certain cells. TNFα was diluted in media containing up to 1% DMSO without any significant effect on agonist mediated p38 MAPK phosphorylation, both in terms of net signal, and EC₅₀ values.

Ranking TNFα signalling inhibitors using p38 MAPK phosphorylation

Either the soluble TNFα R1, or antibodies recognising hTNFα, mTNFα R1 were preincubated with U937 cells for 1 h prior to stimulation with TNFα. Cell lysates were subsequently analysed for phosphorylated p38 MAPK as an indicator of receptor signalling. The results suggest antibodies against either TNFα or TNFα R1 were far more potent inhibitors of receptor signalling than the soluble receptor. As expected, neither the antibody raised against mTNFα, nor control mouse IgG, had any effect on receptor signalling.

CONCLUSIONS

TNFα, a potent pro-inflammatory cytokine, is implicated in several autoimmunological diseases. Currently the therapies that have been developed may result in significant side effects, indicating a need for further drugs that target TNFα signaling. We have presented a novel method for functional screening of TNFα Receptor 1 signaling in a cell based format, based on specific TNFα-induced phosphorylation of p38 MAPK in U937 cells. Endogenous cellular p38 MAPK phosphorylation is measured as a specific functional readout of TNFα receptor 1 engagement in U937 cells. Phosphorylated p38 MAPK is measured using the SureFire™ p38 MAPK assay kit (TGR BioSciences), an AlphaScreen® (PerkinElmer®) based homogeneous detection technology. The assay has acceptable variability and is compatible with DMSO concentrations of up to 1%, allowing screening of large drug-like compound libraries for anti-TNFα signaling activity. Although not tested here, this assay is likely to be equally applicable in other cells that carry the TNFα Receptor 1.

Contact Information

The SureFire™ Cellular Kinase assay kits are formulated for the HTS marketplace for screening large sample numbers and robotic operation, as well as the research laboratory. Further information about kits, prices and protocols can be obtained from the TGR BioSciences Pty Ltd and PerkinElmer Customer Service centres:

TGR BioSciences
Email: info@tgr-biosciences.com.au
www.tgr-biosciences.com.au

PerkinElmer Life And Analytical Sciences, Inc.
Email: CustomerCareUS@perkinelmer.com
www.perkinelmer.com

©2006 TGR BioSciences Pty Ltd. All rights reserved. SureFire is a registered trademark in Australia and other countries of TGR BioSciences Pty Ltd. AlphaScreen, PerkinElmer and the PerkinElmer logo and design are registered trademarks and Envision, ProxiPlate are trademarks of PerkinElmer, Inc. or its subsidiaries, in the United States and other countries. APAF is a registered trademark in Australia of the Australian Proteome Analysis Facility Ltd. All other trademarks not owned by TGR BioSciences Pty Ltd or PerkinElmer, Inc. or its subsidiaries that are depicted herein are the property of their respective owners.